Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 114(8): 080502, 2015 Feb 27.
Article in English | MEDLINE | ID: mdl-25768742

ABSTRACT

Recently it was shown that the resources required to implement unitary operations on a quantum computer can be reduced by using probabilistic quantum circuits called repeat-until-success (RUS) circuits. However, the previously best-known algorithm to synthesize a RUS circuit for a given target unitary requires exponential classical runtime. We present a probabilistically polynomial-time algorithm to synthesize a RUS circuit to approximate any given single-qubit unitary to precision ϵ over the Clifford+T basis. Surprisingly, the T count of the synthesized RUS circuit surpasses the theoretical lower bound of 3 log_{2}(1/ϵ) that holds for purely unitary single-qubit circuit decomposition. By taking advantage of measurement and an ancilla qubit, RUS circuits achieve an expected T count of 1.15 log_{2}(1/ϵ) for single-qubit z rotations. Our method leverages the fact that the set of unitaries implementable by RUS protocols has a higher density in the space of all unitaries compared to the density of purely unitary implementations.

2.
Phys Rev Lett ; 112(14): 140504, 2014 Apr 11.
Article in English | MEDLINE | ID: mdl-24765934

ABSTRACT

We address the problem of compiling quantum operations into braid representations for non-Abelian quasiparticles described by the Fibonacci anyon model. We classify the single-qubit unitaries that can be represented exactly by Fibonacci anyon braids and use the classification to develop a probabilistically polynomial algorithm that approximates any given single-qubit unitary to a desired precision by an asymptotically depth-optimal braid pattern. We extend our algorithm in two directions: to produce braids that allow only single-strand movement, called weaves, and to produce depth-optimal approximations of two-qubit gates. Our compiled braid patterns have depths that are 20 to 1000 times shorter than those output by prior state-of-the-art methods, for precisions ranging between 10(-10) and 10(-30).

3.
Phys Rev Lett ; 109(19): 190501, 2012 Nov 09.
Article in English | MEDLINE | ID: mdl-23215367

ABSTRACT

Determining the optimal implementation of a quantum gate is critical for designing a quantum computer. We consider the crucial task of efficiently decomposing a general single-qubit quantum gate into a sequence of fault-tolerant quantum operations. For a given single-qubit circuit, we construct an optimal gate sequence consisting of fault-tolerant Hadamard (H) and π/8 rotations (T). Our scheme is based on a novel canonical form for single-qubit quantum circuits and the corresponding rules for exactly reducing a general single-qubit circuit to our canonical form. The result is optimal in the number of T gates. We demonstrate that a precomputed epsilon net of canonical circuits in combination with our scheme lowers the depth of approximation circuits by up to 3 orders of magnitude compared to previously reported results.

SELECTION OF CITATIONS
SEARCH DETAIL
...