Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Genes (Basel) ; 14(7)2023 07 10.
Article in English | MEDLINE | ID: mdl-37510329

ABSTRACT

Coronary artery disease (CAD) is one of the leading causes of mortality globally and has long been known to be heritable; however, the specific genetic factors involved have yet to be identified. Recent advances have started to unravel the genetic architecture of this disease and set high expectations about the future use of novel susceptibility variants for its prevention, diagnosis, and treatment. In the past decade, there has been major progress in this area. New tools, like common variant association studies, genome-wide association studies, meta-analyses, and genetic risk scores, allow a better understanding of the genetic risk factors driving CAD. In recent years, researchers have conducted further studies that confirmed the role of numerous genetic factors in the development of CAD. These include genes that affect lipid and carbohydrate metabolism, regulate the function of the endothelium and vascular smooth muscles, influence the coagulation system, or affect the immune system. Many CAD-associated single-nucleotide polymorphisms have been identified, although many of their functions are largely unknown. The inflammatory process that occurs in the coronary vessels is very important in the development of CAD. One important mediator of inflammation is TGFß1. TGFß1 plays an important role in the processes leading to CAD, such as by stimulating macrophage and fibroblast chemotaxis, as well as increasing extracellular matrix synthesis. This review discusses the genetic risk factors related to the development of CAD, with a particular focus on polymorphisms of the transforming growth factor ß (TGFß) gene and its receptor.


Subject(s)
Coronary Artery Disease , Humans , Coronary Artery Disease/genetics , Coronary Artery Disease/diagnosis , Genome-Wide Association Study , Risk Factors , Polymorphism, Single Nucleotide , Transforming Growth Factor beta/genetics
2.
Int J Mol Sci ; 24(2)2023 Jan 12.
Article in English | MEDLINE | ID: mdl-36675041

ABSTRACT

Rheumatoid arthritis (RA) is an autoimmune and inflammatory disease leading to joint destruction. The causes of RA are not fully known. Most likely, the development of the disease depends on the coexistence of many factors, such as hereditary factors, immune system defects, gender, infectious agents, nicotine, and stress. Various epigenetic changes have been identified and correlated with the aggressive phenotype of RA, including the involvement of sirtuins, which are enzymes found in all living organisms. Their high content in the human body can slow down the aging processes, reduce cell death, counteract the appearance of inflammation, and regulate metabolic processes. Sirtuins can participate in several steps of RA pathogenesis. This narrative review presents, collects, and discusses the role of all sirtuins (1-7) in the pathogenesis of rheumatoid arthritis.


Subject(s)
Arthritis, Rheumatoid , Sirtuins , Humans , Arthritis, Rheumatoid/metabolism , Inflammation/complications
SELECTION OF CITATIONS
SEARCH DETAIL
...