Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 15(17)2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37688210

ABSTRACT

Multi-layer fabrics are commonly used in ballistics shields with a lower bulletproof class to protect against pistol and revolver bullets. In order to additionally limit the dynamic deflection of the samples, layers reinforced with additional materials, including non-Newtonian fluids compacted by shear, are additionally used. Performing a wide range of tests in each case can be very problematic; therefore, there are many calculation methods that allow, with better or worse results, mapping of the behavior of the material in the case of impact loads. The search for simplified methods is very important in order to simplify the complexity of numerical fabric models while maintaining the accuracy of the results obtained. In this article, multi-layer composites were tested. Two samples were included in the elements subjected to shelling. In the first sample, the outer layers consisted of aramid fabrics in a laminate with a thermoplastic polymer matrix. The middle layer contained a non-Newtonian shear-thickening fluid enclosed in hexagonal (honeycomb) cells. The fluid was produced using polypropylene glycol and colloidal silica powder with a diameter of 14 µm in the proportions of 60/40. The backing plate was made using a 12-layer composite made of Twaron® para-aramid fabrics with a DCPD matrix-not yet used in a wide range of ballistics. Then, numerical simulations were carried out in the Abaqus/Explicit dynamic analysis. The Johnson-Cook constitutive strength model was used to describe the behavior of elastic-plastic materials constituting the elements of the projectiles. For the non-Newtonian fluid, a Up-Us EOS was used. The inner layers of the fabric were treated as an orthotropic material. Complete homogenization of the sample layers was carried out, thanks to which each layer was treated as a homogeneous continuum. As a parameter of fracture mechanics for shield components, the strain criterion was used with the smooth particles hydrodynamics method (SPH). Then, the results of simulations were compared with the results of the ballistic test for both samples placed next to each other, which resulted in the formation of a multi-layer composite in one ballistic test subjected to impact loads during firing with a 9 × 19 mm Parabellum FMJ projectile with an initial velocity of 370 ± 10 m/s. The results of numerical tests are very similar to the ballistic tests, which indicates the correct mapping of the process and the correct conduct of layer homogenization. The applied proportions of the components in the non-Newtonian fluid allowed a reduction in the deflection compared to previous studies. Additionally, the proposal to use a DCPD matrix allowed to obtain a much lower deflection value compared to other materials, which is a novelty in the field of production of ballistic shields.

2.
Materials (Basel) ; 15(1)2021 Dec 21.
Article in English | MEDLINE | ID: mdl-35009163

ABSTRACT

This article presents an analysis of the effectiveness of available numerical techniques in mapping the characteristic behavior of ballistic ceramics under projectile impact conditions. As part of the work, the ballistic tests were performed on the layered ceramic/steel composite armor and tested with the 7.62 × 39 mm, armor-piercing incendiary (API) BZ projectile. The experimental tests were then mapped using computer simulations. In numerical analyses, four different techniques were used to describe cubic ceramic tiles Al2O3 placed on the ARMOX 500T steel backing plate, i.e.,: the Finite Element Method without Erosion (FEM), Finite Element with erosion (FEM + Erosion), Smoothed Particles Hydrodynamics (SPH) and a hybrid method that converts finite elements to SPH particles after exceeding the defined failure criteria (FEM to SPH conversion). The effectiveness of the individual methods was compared in terms of quality (mapping of characteristic phenomena occurring during the penetration process), quantity (bulge height of the backing plate) and time needed to complete the calculations. On the basis of the results of the experiments and numerical simulations, it was noticed that the most accurate reproduction of the phenomenon of ballistic impact of AP projectiles on ceramic/steel composite armor can be obtained by using a hybrid method, incorporating the conversion of finite elements into SPH particles. This method should be used in cases where accuracy of the results is more important than the time required to complete the calculations. In other situations where the purpose of the calculation is not to determine, for example, the exact value of penetration depth but only to observe a certain trend, the FEM method with defined erosion criteria (variant 2), which is more than 10 times faster, can be successfully used.

3.
Materials (Basel) ; 13(3)2020 Feb 07.
Article in English | MEDLINE | ID: mdl-32046127

ABSTRACT

The paper presents the results of studies on the effects of shooting composite materials produced by pressure infiltration with the EN AW-7075 alloy as a matrix and reinforcement in the form of preforms made of α-Al2O3 particles. Composite materials were made with two reinforcement contents (i.e., 30% and 40% vol. of α-Al2O3 particles). The composites produced in the form of 12 mm thick plates were subjected to impact loads from a 7.62 × 39 FMJ M43 projectile fired from a Kalashnikov. The samples of composites with different contents of strengthening particles were subjected to detailed microscopic examination to determine the mechanism of destruction. The effect of a projectile impact on the microstructure of the material within the perforation holes was identified. There were radial cracks found around the puncture holes and brittle fragmentation of the front surfaces of the specimens. The change in the volume of the reinforcement significantly affected the inlet, puncture and outlet diameters. The observations confirmed that brittle cracking dominated the destruction mechanism and the crack propagation front ran mainly in the matrix material and along the boundaries of the α-Al2O3 particles. In turn, numerical tests were conducted to describe the physical phenomena occurring due to the erosion of a projectile hitting a composite casing. They were performed with the use of the ABAQUS program. Based on constitutive models, the material constants developed from the identification of material properties were modelled and the finite element was generated from homogenization in the form of a representative volume element (RVE). The results of microscopic investigations of the destruction mechanism and numerical investigations were combined. The conducted tests and analyses shed light on the application possibilities of aluminium composites reinforced with Al2O3 particles in the construction of add-on-armour protective structures.

SELECTION OF CITATIONS
SEARCH DETAIL
...