Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Thromb Haemost ; 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38519039

ABSTRACT

BACKGROUND: Increased adhesivity of red blood cells (RBCs) to endothelial cells (ECs) may contribute to organ dysfunction in malaria, sickle cell disease, and diabetes. RBCs normally export nitric oxide (NO)-derived vascular signals, facilitating blood flow. S-nitrosothiols (SNOs) are thiol adducts formed in RBCs from precursor NO upon the oxygenation-linked allosteric transition in hemoglobin. RBCs export these vasoregulatory SNOs on demand, thereby regulating regional blood flow and preventing RBC-EC adhesion, and the large (system L) neutral amino acid transporter 1 (LAT1; SLC7A5) appears to mediate SNO export by RBCs. METHODS: To determine the role of LAT1-mediated SNO import by ECs generally and of LAT1-mediated SNO import by ECs in RBC SNO-dependent modulation of RBC sequestration and blood oxygenation in vivo, we engineered LAT1fl/fl; Cdh5-Cre+ mice, in which the putative SNO transporter LAT1 can be inducibly depleted (knocked down, KD) specifically in ECs ("LAT1ECKD"). RESULTS: We show that LAT1 in mouse lung ECs mediates cellular SNO uptake. ECs from LAT1ECKD mice (tamoxifen-induced LAT1fl/fl; Cdh5-Cre+) import SNOs poorly ex vivo compared with ECs from wild-type (tamoxifen-treated LAT1fl/fl; Cdh5-Cre-) mice. In vivo, endothelial depletion of LAT1 increased RBC sequestration in the lung and decreased blood oxygenation after RBC transfusion. CONCLUSION: This is the first study showing a role for SNO transport by LAT1 in ECs in a genetic mouse model. We provide the first direct evidence for the coordination of RBC SNO export with EC SNO import via LAT1. SNO flux via LAT1 modulates RBC-EC sequestration in lungs after transfusion, and its disruption impairs blood oxygenation by the lung.

2.
Sci Rep ; 12(1): 850, 2022 01 17.
Article in English | MEDLINE | ID: mdl-35039539

ABSTRACT

Immunity Related GTPases (IRG) are a family of proteins produced during infection that regulate membrane remodeling events in cells, particularly autophagy and mitophagy. The human IRGM gene has been strongly associated with Crohn's disease and other inflammatory diseases through Genome-Wide Association studies. Absence of Irgm1 in mice prompts intestinal inflammation, autoimmunity, and impaired immune control of pathogenic bacteria and protozoa. Although prior work has focused on a prominent role for IRGM/Irgm1 in regulating macrophage function, the work described here addresses a potential role of Irgm1 in regulating the function of mature T cells. Irgm1 was found to be highly expressed in T cells in a manner that varied with the particular T cell subset and increased with activation. Mice with a complete lack of Irgm1, or a conditional lack of Irgm1 specifically in T cells, displayed numerous changes in T cell numbers and function in all subsets examined, including CD4+ (Th1 and Treg) and CD8+ T cells. Related to changes in T cell number, apoptosis was found to be increased in Irgm1-deficient CD4+ and CD8+ T cells. Altered T cell metabolism appeared to be a key driver of the phenotypes: Glucose metabolism and glycolysis were increased in Irgm1-deficient CD4+ and CD8+ T cells, and muting these effects with glycolytic inhibitors partially restored T cell function and viability.


Subject(s)
GTP-Binding Proteins/physiology , T-Lymphocyte Subsets/metabolism , T-Lymphocyte Subsets/physiology , Animals , Apoptosis/genetics , Autophagy/genetics , CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , Cells, Cultured , GTP-Binding Proteins/genetics , GTP-Binding Proteins/metabolism , Gene Expression/genetics , Glucose/metabolism , Glycolysis , Lymphocyte Activation/genetics , Mice, Inbred C57BL , Mice, Transgenic , T-Lymphocyte Subsets/immunology
3.
Epilepsy Behav ; 116: 107732, 2021 03.
Article in English | MEDLINE | ID: mdl-33493807

ABSTRACT

BACKGROUND: ATP1A2 mutations cause hemiplegic migraine with or without epilepsy or acute reversible encephalopathy. Typical onset is in adulthood or older childhood without subsequent severe long-term developmental impairments. AIM: We aimed to describe the manifestations of early onset severe ATP1A2-related epileptic encephalopathy and its underlying mutations in a cohort of seven patients. METHODS: A retrospective chart review of a cohort of seven patients was conducted. Response to open-label memantine therapy, used off-label due to its NMDA receptor antagonist effects, was assessed by the Global Rating Scale of Change (GRSC) and Clinical Global Impression Scale of Improvement (CGI-I) methodologies. Molecular modeling was performed using PyMol program. RESULTS: Patients (age 2.5-20 years) had symptom onset at an early age (6 days-1 year). Seizures were either focal or generalized. Common features were: drug resistance, recurrent status epilepticus, etc., severe developmental delay with episodes of acute severe encephalopathy often with headaches, dystonias, hemiplegias, seizures, and developmental regression. All had variants predicted to be disease causing (p.Ile293Met, p.Glu1000Lys, c.1017+5G>A, p.Leu809Arg, and 3 patients with p.Met813Lys). Modeling revealed that mutations interfered with ATP1A2 ion binding and translocation sites. Memantine, given to five, was tolerated in all (mean treatment: 2.3 years, range 6 weeks-4.8 years) with some improvements reported in all five. CONCLUSIONS: Our observations describe a distinctive clinical profile of seven unrelated probands with early onset severe ATP1A2-related epileptic encephalopathy, provide insights into structure-function relationships of ATP1A2 mutations, and support further studies of NMDAR antagonist therapy in ATP1A2-encephalopathy.


Subject(s)
Brain Diseases , Epilepsy , Adolescent , Adult , Child , Child, Preschool , Humans , Mutation/genetics , Retrospective Studies , Sodium-Potassium-Exchanging ATPase/genetics , Young Adult
4.
Science ; 368(6487): 181-186, 2020 04 10.
Article in English | MEDLINE | ID: mdl-32273467

ABSTRACT

Embryonic development is a complex process that is unamenable to direct observation. In this study, we implanted a window to the mouse uterus to visualize the developing embryo from embryonic day 9.5 to birth. This removable intravital window allowed manipulation and high-resolution imaging. In live mouse embryos, we observed transient neurotransmission and early vascularization of neural crest cell (NCC)-derived perivascular cells in the brain, autophagy in the retina, viral gene delivery, and chemical diffusion through the placenta. We combined the imaging window with in utero electroporation to label and track cell division and movement within embryos and observed that clusters of mouse NCC-derived cells expanded in interspecies chimeras, whereas adjacent human donor NCC-derived cells shrank. This technique can be combined with various tissue manipulation and microscopy methods to study the processes of development at unprecedented spatiotemporal resolution.


Subject(s)
Embryo, Mammalian/cytology , Embryo, Mammalian/physiology , Embryonic Development , Intravital Microscopy/methods , Neural Crest , Animals , Brain/embryology , Brain/physiology , Cell Division , Cell Movement , Chimera/embryology , Chimera/physiology , Electroporation , Female , Gene Transfer Techniques , Mice , Mice, Transgenic , Neovascularization, Physiologic , Neural Crest/blood supply , Neural Crest/cytology , Neural Crest/embryology , Placenta/physiology , Pregnancy , Retina/embryology , Retina/physiology , Synaptic Transmission , Uterus
5.
eNeuro ; 7(2)2020.
Article in English | MEDLINE | ID: mdl-32015097

ABSTRACT

A fundamental challenge in studying principles of organization used by the olfactory system to encode odor concentration information has been identifying comprehensive sets of activated odorant receptors (ORs) across a broad concentration range inside freely behaving animals. In mammals, this has recently become feasible with high-throughput sequencing-based methods that identify populations of activated ORs in vivo In this study, we characterized the mouse OR repertoires activated by the two odorants, acetophenone (ACT) and 2,5-dihydro-2,4,5-trimethylthiazoline (TMT), from 0.01% to 100% (v/v) as starting concentrations using phosphorylated ribosomal protein S6 capture followed by RNA-Seq. We found Olfr923 to be one of the most sensitive ORs that is enriched by ACT. Using a mouse line that genetically labels Olfr923-positive axons, we provided evidence that ACT activates the Olfr923 glomeruli in the olfactory bulb. Through molecular dynamics stimulations, we identified amino acid residues in the Olfr923 binding cavity that facilitate ACT binding. This study sheds light on the active process by which unique OR repertoires may collectively facilitate the discrimination of odorant concentrations.


Subject(s)
Olfactory Receptor Neurons , Receptors, Odorant , Animals , Mammals/metabolism , Odorants , Olfactory Bulb/metabolism , Olfactory Receptor Neurons/metabolism , Receptors, Odorant/genetics , Receptors, Odorant/metabolism , Smell
6.
Nat Commun ; 10(1): 5490, 2019 12 02.
Article in English | MEDLINE | ID: mdl-31792216

ABSTRACT

Field cancerization is a premalignant process marked by clones of oncogenic mutations spreading through the epithelium. The timescales of intestinal field cancerization can be variable and the mechanisms driving the rapid spread of oncogenic clones are unknown. Here we use a Cancer rainbow (Crainbow) modelling system for fluorescently barcoding somatic mutations and directly visualizing the clonal expansion and spread of oncogenes. Crainbow shows that mutations of ß-catenin (Ctnnb1) within the intestinal stem cell results in widespread expansion of oncogenes during perinatal development but not in adults. In contrast, mutations that extrinsically disrupt the stem cell microenvironment can spread in adult intestine without delay. We observe the rapid spread of premalignant clones in Crainbow mice expressing oncogenic Rspondin-3 (RSPO3), which occurs by increasing crypt fission and inhibiting crypt fixation. Crainbow modelling provides insight into how somatic mutations rapidly spread and a plausible mechanism for predetermining the intratumor heterogeneity found in colon cancers.


Subject(s)
Colonic Neoplasms/genetics , Disease Models, Animal , Neoplastic Stem Cells/cytology , Animals , Carcinogenesis , Cell Proliferation , Colonic Neoplasms/metabolism , Colonic Neoplasms/physiopathology , Humans , Mice , Mutation , Neoplastic Stem Cells/metabolism , Oncogenes , Thrombospondins/genetics , Thrombospondins/metabolism
7.
J Biol Chem ; 292(17): 7208-7222, 2017 04 28.
Article in English | MEDLINE | ID: mdl-28275053

ABSTRACT

The leucine-rich G protein-coupled receptor-5 (LGR5) is expressed in adult tissue stem cells of many epithelia, and its overexpression is negatively correlated with cancer prognosis. LGR5 potentiates WNT/ß-catenin signaling through its unique constitutive internalization property that clears negative regulators of the WNT-receptor complex from the membrane. However, both the mechanism and physiological relevance of LGR5 internalization are unclear. Therefore, a natural product library was screened to discover LGR5 internalization inhibitors and gain mechanistic insight into LGR5 internalization. The plant lignan justicidin B blocked the constitutive internalization of LGR5. Justicidin B is structurally similar to more potent vacuolar-type H+-ATPase inhibitors, which all inhibited LGR5 internalization by blocking clathrin-mediated endocytosis. We then tested the physiological relevance of LGR5 internalization blockade in vivo A LGR5-rainbow (LBOW) mouse line was engineered to express three different LGR5 isoforms along with unique fluorescent protein lineage reporters in the same mouse. In this manner, the effects of each isoform on cell fate can be simultaneously assessed through simple fluorescent imaging for each lineage reporter. LBOW mice express three different forms of LGR5, a wild-type form that constitutively internalizes and two mutant forms whose internalization properties have been compromised by genetic perturbations within the carboxyl-terminal tail. LBOW was activated in the intestinal epithelium, and a year-long lineage-tracing course revealed that genetic blockade of LGR5 internalization diminished cell fitness. Together these data provide proof-of-concept genetic evidence that blocking the clathrin-mediated endocytosis of LGR5 could be used to pharmacologically control cell behavior.


Subject(s)
Clathrin/chemistry , Endocytosis , Leucine/chemistry , Receptors, G-Protein-Coupled/chemistry , Adenosine Triphosphatases/chemistry , Animals , Cell Line, Tumor , Cell Lineage , Cell Proliferation , Dioxolanes/chemistry , Epithelium/metabolism , Female , Homeostasis , Humans , Lignans/chemistry , Mice , Mice, Inbred C57BL , Protein Isoforms , Rats , Stem Cells/cytology , Stochastic Processes , Wnt Signaling Pathway
8.
Mol Cancer Res ; 15(5): 507-520, 2017 05.
Article in English | MEDLINE | ID: mdl-28148827

ABSTRACT

IDH1 mutations occur in the majority of low-grade gliomas and lead to the production of the oncometabolite, D-2-hydroxyglutarate (D-2HG). To understand the effects of tumor-associated mutant IDH1 (IDH1-R132H) on both the neural stem cell (NSC) population and brain tumorigenesis, genetically faithful cell lines and mouse model systems were generated. Here, it is reported that mouse NSCs expressing Idh1-R132H displayed reduced proliferation due to p53-mediated cell-cycle arrest as well as a decreased ability to undergo neuronal differentiation. In vivo, Idh1-R132H expression reduced proliferation of cells within the germinal zone of the subventricular zone (SVZ). The NSCs within this area were dispersed and disorganized in mutant animals, suggesting that Idh1-R132H perturbed the NSCs and the microenvironment from which gliomas arise. In addition, tumor-bearing animals expressing mutant Idh1 displayed a prolonged survival and also overexpressed Olig2, features consistent with IDH1-mutated human gliomas. These data indicate that mutant Idh1 disrupts the NSC microenvironment and the candidate cell-of-origin for glioma; thus, altering the progression of tumorigenesis. In addition, this study provides a mutant Idh1 brain tumor model that genetically recapitulates human disease, laying the foundation for future investigations on mutant IDH1-mediated brain tumorigenesis and targeted therapy.Implications: Through the use of a conditional mutant mouse model that confers a less aggressive tumor phenotype, this study reveals that mutant Idh1 impacts the candidate cell-of-origin for gliomas. Mol Cancer Res; 15(5); 507-20. ©2017 AACR.


Subject(s)
Brain Neoplasms/pathology , Isocitrate Dehydrogenase/genetics , Lateral Ventricles/cytology , Mutation , Animals , Brain Neoplasms/genetics , Cell Differentiation , Cell Proliferation , Cells, Cultured , DNA Methylation , Gene Knock-In Techniques , Humans , Lateral Ventricles/pathology , Mice , Mice, Transgenic , Neural Stem Cells/cytology , Neural Stem Cells/pathology , Oligodendrocyte Transcription Factor 2/genetics , Promoter Regions, Genetic , Tumor Microenvironment
9.
Proc Natl Acad Sci U S A ; 113(35): 9858-63, 2016 08 30.
Article in English | MEDLINE | ID: mdl-27535935

ABSTRACT

Homeostatic maintenance of T cells with broad clonal diversity is influenced by both continuing output of young T cells from the thymus and ongoing turnover of preexisting clones in the periphery. In the absence of infection, self and commensal antigens are thought to play important roles in selection and homeostatic maintenance of the T-cell pool. Most naïve T cells are short-lived due to lack of antigen encounter, whereas antigen-experienced T cells may survive and persist as long-lived clones. Thus far, little is known about the homeostasis, antigenic specificity, and clonal diversity of long-lived T-cell clones in peripheral lymphoid organs under healthy living conditions. To identify long-lived T-cell clones in mice, we designed a lineage-tracing method to label a wave of T cells produced in the thymus of young mice. After aging the mice for 1.5 y, we found that lineage-tracked T cells consisted of primarily memory-like T cells and T regulatory cells. T-cell receptor repertoire analysis revealed that the lineage-tracked CD4 memory-like T cells and T regulatory cells exhibited age-dependent enrichment of shared clonotypes. Furthermore, these shared clonotypes were found across different mice maintained in the same housing condition. These findings suggest that nonrandom and shared antigens are involved in controlling selection, retention, and immune tolerance of long-lived T-cell clones under healthy living conditions.


Subject(s)
Aging/immunology , Homeostasis/immunology , Selection, Genetic/immunology , T-Lymphocytes/immunology , Aging/genetics , Animals , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Clone Cells , Cytokines/genetics , Cytokines/immunology , Cytokines/metabolism , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/immunology , Forkhead Transcription Factors/metabolism , Homeostasis/genetics , Immunologic Memory/genetics , Immunologic Memory/immunology , Mice, 129 Strain , Mice, Transgenic , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/metabolism , T-Lymphocytes/metabolism , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Thymus Gland/cytology , Thymus Gland/immunology , Thymus Gland/metabolism
10.
J Immunol ; 195(9): 4282-91, 2015 Nov 01.
Article in English | MEDLINE | ID: mdl-26408667

ABSTRACT

Dendritic epidermal T cells (DETCs) are generated exclusively in the fetal thymus and maintained in the skin epithelium throughout postnatal life of the mouse. DETCs have restricted antigenic specificity as a result of their exclusive usage of a canonical TCR. Although the importance of the TCR in DETC development has been well established, the exact role of TCR signaling in DETC homeostasis and function remains incompletely defined. In this study, we investigated TCR signaling in fully matured DETCs by lineage-restricted deletion of the Lat gene, an essential signaling molecule downstream of the TCR. We found that Lat deletion impaired TCR-dependent cytokine gene activation and the ability of DETCs to undergo proliferative expansion. However, linker for activation of T cells-deficient DETCs were able to maintain long-term population homeostasis, although with a reduced proliferation rate. Mice with Lat deletion in DETCs exhibited delayed wound healing accompanied by impaired clonal expansion within the wound area. Our study revealed differential requirements for TCR signaling in homeostatic maintenance of DETCs and in their effector function during wound healing.


Subject(s)
Homeostasis/immunology , Langerhans Cells/immunology , Receptors, Antigen, T-Cell/immunology , Signal Transduction/immunology , T-Lymphocytes/immunology , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/immunology , Adaptor Proteins, Signal Transducing/metabolism , Animals , Animals, Newborn , Cells, Cultured , Flow Cytometry , Homeostasis/genetics , Langerhans Cells/metabolism , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Membrane Proteins/genetics , Membrane Proteins/immunology , Membrane Proteins/metabolism , Mice, Knockout , Mice, Transgenic , Microscopy, Confocal , Phosphoproteins/genetics , Phosphoproteins/immunology , Phosphoproteins/metabolism , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/metabolism , Signal Transduction/genetics , T-Lymphocytes/metabolism , Wound Healing/genetics , Wound Healing/immunology
11.
Plant Genome ; 8(1): eplantgenome2014.07.0028, 2015 Mar.
Article in English | MEDLINE | ID: mdl-33228288

ABSTRACT

Faba bean (Vicia faba L.) has been little examined from a genetic or genomic perspective despite its status as an established food and forage crop with some key pharmaceutical factors such as vicine and convicine (VC), which provoke severe haemolysis in genetically susceptible humans. We developed next-generation sequencing libraries to maximize information to elucidate the VC pathway or relevant markers as well as other genes of interest for the species. One selected cultivar, A01155, lacks synthesis of the favism-provoking factors, VC, and is low in tannin, while two cultivars, SSNS-1 and CDC Fatima, are wild-type for these factors. Tissues (5- to 6-d-old root and etiolated shoot and developing seed coat) were selected to maximize the utility and breadth of the gene expression profile. Approximately 1.2 × 106 expressed transcripts were sequenced and assembled into contigs. The synthetic pathways for phosphatidylinositol or phytate, the raffinose family oligosaccharides, and proanthocyanidin were examined and found to contain nearly a full complement of the synthetic genes for these pathways. A severe deficiency in anthocyanidin reductase expression was found in the low-tannin cultivar A01155. Approximately 5300 variants, including 234 variants specific to one of the three cultivars, were identified. Differences in expression and variants potentially related to VC synthesis were analyzed using strategies exploiting differences in expression between cultivars and tissues. These sequences should be of high utility for marker-assisted selection for the key traits vicine, convicine, and proanthocyanidin, and should contribute to the scant genetic maps available for this species.

12.
GM Crops Food ; 5(2): 120-31, 2014.
Article in English | MEDLINE | ID: mdl-24787279

ABSTRACT

Phosphatidylinositol-specific phospholipase C2 (PLC2) is a signaling enzyme with hydrolytic activity against membrane-bound phosphoinositides. It catalyzes the cleavage of phosphatidylinositol(4,5)bisphosphate (PtdIns(4,5)P 2) into two initial second messengers, myo-inositol-1,4,5-trisphosphate (InsP 3) and diacylglycerol (DAG). The former, as well as its fully phosphorylated derivative, myo-inositol-1,2,3,4,5,6-hexakisphosphate (InsP 6), play a major role in calcium signaling events within the cell, while DAG may be used in the regeneration of phospholipids or as a precursor for phosphatidic acid (PA) biosynthesis, an important signaling molecule involved in both biotic and abiotic types of stress tolerance. Overexpression of the gene for Brassica napus phospholipase C2 (BnPLC2) in Brassica napus has been shown to enhance drought tolerance, modulate multiple genes involved in different processes and favorably affect hormonal levels in different tissues. We, therefore, undertook the current study with a view to examining, at the metabolome level, its effect on both abiotic (low temperature) and biotic (stem white rot disease) types of stress in canola. Thus, while transgenic plants exhibited a significant rise in maltose levels and a concomitant elevation in some unsaturated free fatty acids (FFAs), glycerol, and glycerol 3-phosphate under subzero temperatures, they accumulated high levels of raffinose, stachyose and other sugars as well as some flavonoids under acclimatization conditions. Collectively, overexpression of BnPLC2 appears to have triggered different metabolite patterns consistent with its abiotic and, to a limited extent, biotic stress tolerance phenotypes.


Subject(s)
Brassica napus/genetics , Gene Expression Regulation, Plant , Phosphoinositide Phospholipase C/genetics , Plants, Genetically Modified/metabolism , Stress, Physiological , Temperature , Brassica napus/microbiology , Calcium Signaling , Phosphoinositide Phospholipase C/metabolism , Plants, Genetically Modified/microbiology
13.
Plants (Basel) ; 4(1): 1-26, 2014 Dec 26.
Article in English | MEDLINE | ID: mdl-27135314

ABSTRACT

Low phytic acid (lpa) crops are low in phytic acid and high in inorganic phosphorus (Pi). In this study, two lpa pea genotypes, 1-150-81, 1-2347-144, and their progenitor CDC Bronco were grown in field trials for two years. The lpa genotypes were lower in IP6 and higher in Pi when compared to CDC Bronco. The total P concentration was similar in lpa genotypes and CDC Bronco throughout the seed development. The action of myo-inositol phosphate synthase (MIPS) (EC 5.5.1.4) is the first and rate-limiting step in the phytic acid biosynthesis pathway. Aiming at understanding the genetic basis of the lpa mutation in the pea, a 1530 bp open reading frame of MIPS was amplified from CDC Bronco and the lpa genotypes. Sequencing results showed no difference in coding sequence in MIPS between CDC Bronco and lpa genotypes. Transcription levels of MIPS were relatively lower at 49 days after flowering (DAF) than at 14 DAF for CDC Bronco and lpa lines. This study elucidated the rate and accumulation of phosphorus compounds in lpa genotypes. The data also demonstrated that mutation in MIPS was not responsible for the lpa trait in these pea lines.

14.
BMC Plant Biol ; 13: 84, 2013 May 21.
Article in English | MEDLINE | ID: mdl-23692661

ABSTRACT

BACKGROUND: myo-Inositol (Ins) metabolism during early stages of seed development plays an important role in determining the distributional relationships of some seed storage components such as the antinutritional factors, sucrose galactosides (also known as raffinose oligosaccharides) and phytic acid (PhA) (myo-inositol 1,2,3,4,5,6-hexakisphosphate). The former is a group of oligosaccharides, which plays a role in desiccation at seed maturation. They are not easily digested by monogastric animals, hence their flatulence-causing properties. Phytic acid is highly negatively charged, which chelates positive ions of essential minerals and decreases their bioavailability. It is also a major cause of phosphate-related water pollution. Our aim was to investigate the influence of competitive diversion of Ins as common substrate on the biosynthesis of phytate and sucrose galactosides. RESULTS: We have studied the initial metabolic patterns of Ins in developing seeds of Brassica napus and determined that early stages of seed development are marked by rapid deployment of Ins into a variety of pathways, dominated by interconversion of polar (Ins phosphates) and non-polar (phospholipids) species. In a time course experiment at early stages of seed development, we show Ins to be a highly significant constituent of the endosperm and seed coat, but with no phytate biosynthesis occurring in either tissue. Phytate accumulation appears to be confined mainly within the embryo throughout seed development and maturation. In our approach, the gene for myo-inositol methyltransferase (IMT), isolated from Mesembryanthemum crystallinum (ice plant), was transferred to B. napus under the control of the seed-specific promoters, napin and phaseolin. Introduction of this new metabolic step during seed development prompted Ins conversion to the corresponding monomethyl ether, ononitol, and affected phytate accumulation. We were able to produce homozygous transgenic lines with 19%-35% average phytate reduction. Additionally, changes in the raffinose content and related sugars occurred along with enhanced sucrose levels. Germination rates, viability and other seed parameters were unaffected by the IMT transgene over-expression. CONCLUSIONS: Competitive methylation of Ins during seed development reduces seed antinutritional components and enhances its nutritional characteristics while maintaining adequate phosphate reserves. Such approach should potentially raise the canola market value and likely, that of other crops.


Subject(s)
Brassica napus/growth & development , Brassica napus/metabolism , Inositol/metabolism , Metabolic Networks and Pathways , Phytic Acid/metabolism , Seeds/metabolism , Germination , Methylation , Seeds/growth & development
15.
J Biol Chem ; 285(17): 12851-61, 2010 Apr 23.
Article in English | MEDLINE | ID: mdl-20178984

ABSTRACT

Conversion to glycogen is a major fate of ingested glucose in the body. A rate-limiting enzyme in the synthesis of glycogen is glycogen synthase encoded by two genes, GYS1, expressed in muscle and other tissues, and GYS2, primarily expressed in liver (liver glycogen synthase). Defects in GYS2 cause the inherited monogenic disease glycogen storage disease 0. We have generated mice with a liver-specific disruption of the Gys2 gene (liver glycogen synthase knock-out (LGSKO) mice), using Lox-P/Cre technology. Conditional mice carrying floxed Gys2 were crossed with mice expressing Cre recombinase under the albumin promoter. The resulting LGSKO mice are viable, develop liver glycogen synthase deficiency, and have a 95% reduction in fed liver glycogen content. They have mild hypoglycemia but dispose glucose less well in a glucose tolerance test. Fed, LGSKO mice also have a reduced capacity for exhaustive exercise compared with mice carrying floxed alleles, but the difference disappears after an overnight fast. Upon fasting, LGSKO mice reach within 4 h decreased blood glucose levels attained by control floxed mice only after 24 h of food deprivation. The LGSKO mice maintain this low blood glucose for at least 24 h. Basal gluconeogenesis is increased in LGSKO mice, and insulin suppression of endogenous glucose production is impaired as assessed by euglycemic-hyperinsulinemic clamp. This observation correlates with an increase in the liver gluconeogenic enzyme phosphoenolpyruvate carboxykinase expression and activity. This mouse model mimics the pathophysiology of glycogen storage disease 0 patients and highlights the importance of liver glycogen stores in whole body glucose homeostasis.


Subject(s)
Fasting , Glycogen Storage Disease/enzymology , Glycogen Synthase/metabolism , Liver/enzymology , Animals , Blood Glucose/genetics , Blood Glucose/metabolism , Crosses, Genetic , Gluconeogenesis/genetics , Glucose Clamp Technique/methods , Glucose Tolerance Test , Glycogen/genetics , Glycogen/metabolism , Glycogen Storage Disease/genetics , Glycogen Synthase/genetics , Hypoglycemia/genetics , Hypoglycemia/metabolism , Mice , Mice, Knockout , Organ Specificity , Time Factors
16.
Plant Cell Environ ; 32(12): 1664-81, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19671099

ABSTRACT

Phosphatidylinositol-specific phospholipase C (PtdIns-PLC2) plays a central role in the phosphatidylinositol-specific signal transduction pathway. It catalyses the hydrolysis of membrane-bound phosphatidylinositol 4,5-bisphosphate to produce two second messengers, sn-1,2-diacylglycerol and inositol 1,4,5-trisphosphate. The former is a membrane activator of protein kinase C in mammalian systems, and the latter is a Ca(2+) modulator which induces distinctive oscillating bursts of cytosolic Ca(2+), resulting in regulation of gene expression and activation of proteins. Sustained over-expression of BnPtdIns-PLC2 in transgenic Brassica napus lines brought about an early shift from vegetative to reproductive phases, and shorter maturation periods, accompanied by notable alterations in hormonal distribution patterns in various tissues. The photosynthetic rate increased, while stomata were partly closed. Numerous gene expression changes that included induction of stress-related genes such as glutathione S-transferase, hormone-regulated and regulatory genes, in addition to a number of kinases, calcium-regulated factors and transcription factors, were observed. Other changes included increased phytic acid levels and phytohormone organization patterns. These results suggest the importance of PtdIns-PLC2 as an elicitor of a battery of events that systematically control hormone regulation, and plant growth and development in what may be a preprogrammed mode.


Subject(s)
Brassica napus/genetics , Brassica rapa/enzymology , Droughts , Flowers/growth & development , Phosphoinositide Phospholipase C/metabolism , Plant Growth Regulators/metabolism , Brassica napus/enzymology , Brassica rapa/genetics , Brassica rapa/growth & development , Fatty Acids/analysis , Flowers/enzymology , Gene Expression Regulation, Plant , Inositol Phosphates/isolation & purification , Inositol Phosphates/metabolism , Phosphoinositide Phospholipase C/genetics , Phytic Acid/metabolism , Plants, Genetically Modified/enzymology , Plants, Genetically Modified/genetics , Plants, Genetically Modified/growth & development , RNA, Plant/genetics , Seeds/chemistry , Signal Transduction
17.
PLoS Med ; 5(1): e27, 2008 Jan 29.
Article in English | MEDLINE | ID: mdl-18232732

ABSTRACT

BACKGROUND: Stored glycogen is an important source of energy for skeletal muscle. Human genetic disorders primarily affecting skeletal muscle glycogen turnover are well-recognised, but rare. We previously reported that a frameshift/premature stop mutation in PPP1R3A, the gene encoding RGL, a key regulator of muscle glycogen metabolism, was present in 1.36% of participants from a population of white individuals in the UK. However, the functional implications of the mutation were not known. The objective of this study was to characterise the molecular and physiological consequences of this genetic variant. METHODS AND FINDINGS: In this study we found a similar prevalence of the variant in an independent UK white population of 744 participants (1.46%) and, using in vivo (13)C magnetic resonance spectroscopy studies, demonstrate that human carriers (n = 6) of the variant have low basal (65% lower, p = 0.002) and postprandial muscle glycogen levels. Mice engineered to express the equivalent mutation had similarly decreased muscle glycogen levels (40% lower in heterozygous knock-in mice, p < 0.05). In muscle tissue from these mice, failure of the truncated mutant to bind glycogen and colocalize with glycogen synthase (GS) decreased GS and increased glycogen phosphorylase activity states, which account for the decreased glycogen content. CONCLUSIONS: Thus, PPP1R3A C1984DeltaAG (stop codon 668) is, to our knowledge, the first prevalent mutation described that directly impairs glycogen synthesis and decreases glycogen levels in human skeletal muscle. The fact that it is present in approximately 1 in 70 UK whites increases the potential biomedical relevance of these observations.


Subject(s)
Codon, Nonsense , Frameshift Mutation , Glycogen/biosynthesis , Muscle, Skeletal/enzymology , Phosphoprotein Phosphatases/physiology , Adult , Animals , Diabetes Mellitus, Type 2/enzymology , Female , Gene Frequency , Glycogen/analysis , Glycogen Phosphorylase/metabolism , Glycogen Synthase/metabolism , Humans , Male , Mice , Mice, Transgenic , Middle Aged , Molecular Sequence Data , Muscle, Skeletal/chemistry , Phosphoprotein Phosphatases/genetics , Postprandial Period , Structure-Activity Relationship , United Kingdom , White People/genetics
18.
Mol Cell Biol ; 27(5): 1784-94, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17158923

ABSTRACT

The mouse gene Recql is a member of the RecQ subfamily of DEx-H-containing DNA helicases. Five members of this family have been identified in both humans and mice, and mutations in three of these, BLM, WRN, and RECQL4, are associated with human diseases and a cellular phenotype that includes genomic instability. To date, no human disease has been associated with mutations in RECQL and no cellular phenotype has been associated with its deficiency. To gain insight into the physiological function of RECQL, we disrupted Recql in mice. RECQL-deficient mice did not exhibit any apparent phenotypic differences compared to wild-type mice. Cytogenetic analyses of embryonic fibroblasts from the RECQL-deficient mice revealed aneuploidy, spontaneous chromosomal breakage, and frequent translocation events. In addition, the RECQL-deficient cells were hypersensitive to ionizing radiation, exhibited an increased load of DNA damage, and displayed elevated spontaneous sister chromatid exchanges. These results provide evidence that RECQL has a unique cellular role in the DNA repair processes required for genomic integrity. Genetic background, functional redundancy, and perhaps other factors may protect the unstressed mouse from the types of abnormalities that might be expected from the severe chromosomal aberrations detected at the cellular level.


Subject(s)
Chromosomal Instability/genetics , RecQ Helicases/metabolism , Alleles , Animals , Cells, Cultured , DNA Damage/drug effects , DNA Damage/genetics , Demecolcine/pharmacology , Electroporation , Embryonic Stem Cells/cytology , Fibroblasts/drug effects , Fibroblasts/metabolism , Fluorescent Dyes , In Situ Hybridization, Fluorescence , Indoles , Male , Mice , Mice, Inbred C57BL , Mice, Inbred Strains , Mice, Knockout , RNA, Messenger/analysis , Radiation, Ionizing , RecQ Helicases/genetics , Sister Chromatid Exchange/genetics , Tissue Distribution
19.
PLoS Genet ; 2(10): e177, 2006 Oct.
Article in English | MEDLINE | ID: mdl-17069463

ABSTRACT

The Ran-binding protein 2 (RanBP2) is a large multimodular and pleiotropic protein. Several molecular partners with distinct functions interacting specifically with selective modules of RanBP2 have been identified. Yet, the significance of these interactions with RanBP2 and the genetic and physiological role(s) of RanBP2 in a whole-animal model remain elusive. Here, we report the identification of two novel partners of RanBP2 and a novel physiological role of RanBP2 in a mouse model. RanBP2 associates in vitro and in vivo and colocalizes with the mitochondrial metallochaperone, Cox11, and the pacemaker of glycolysis, hexokinase type I (HKI) via its leucine-rich domain. The leucine-rich domain of RanBP2 also exhibits strong chaperone activity toward intermediate and mature folding species of Cox11 supporting a chaperone role of RanBP2 in the cytosol during Cox11 biogenesis. Cox11 partially colocalizes with HKI, thus supporting additional and distinct roles in cell function. Cox11 is a strong inhibitor of HKI, and RanBP2 suppresses the inhibitory activity of Cox11 over HKI. To probe the physiological role of RanBP2 and its role in HKI function, a mouse model harboring a genetically disrupted RanBP2 locus was generated. RanBP2(-/-) are embryonically lethal, and haploinsufficiency of RanBP2 in an inbred strain causes a pronounced decrease of HKI and ATP levels selectively in the central nervous system. Inbred RanBP2(+/-) mice also exhibit deficits in growth rates and glucose catabolism without impairment of glucose uptake and gluconeogenesis. These phenotypes are accompanied by a decrease in the electrophysiological responses of photosensory and postreceptoral neurons. Hence, RanBP2 and its partners emerge as critical modulators of neuronal HKI, glucose catabolism, energy homeostasis, and targets for metabolic, aging disorders and allied neuropathies.


Subject(s)
Glucose/metabolism , Haploidy , Hexokinase/metabolism , Membrane Proteins/metabolism , Mitochondrial Proteins/metabolism , Molecular Chaperones/metabolism , Nuclear Pore Complex Proteins/metabolism , Amino Acid Sequence , Animals , Cells, Cultured , Copper Transport Proteins , Electron Transport Chain Complex Proteins , Electroretinography , HSP70 Heat-Shock Proteins/metabolism , Membrane Proteins/chemistry , Mice , Mice, Mutant Strains , Mitochondrial Proteins/chemistry , Models, Biological , Molecular Chaperones/chemistry , Molecular Chaperones/genetics , Molecular Sequence Data , Mutagenesis, Insertional , Nuclear Pore Complex Proteins/chemistry , Nuclear Pore Complex Proteins/genetics , Phenotype , Photoreceptor Cells/cytology , Photoreceptor Cells/metabolism , Protein Binding , Protein Structure, Tertiary , Protein Transport , Structure-Activity Relationship
20.
J Immunol ; 176(10): 6254-61, 2006 May 15.
Article in English | MEDLINE | ID: mdl-16670336

ABSTRACT

Leukotriene B(4) mediates diverse inflammatory diseases through the G protein-coupled receptors BLT1 and BLT2. In this study, we developed mice deficient in BLT1 and BLT2 by simultaneous targeted disruption of these genes. The BLT1/BLT2 double-deficient mice developed normally and peritoneal exudate cells showed no detectable responses to leukotriene B(4) confirming the deletion of the BLT1/BLT2 locus. In a model of collagen-induced arthritis on the C57BL/6 background, the BLT1/BLT2(-/-) as well as the previously described BLT1(-/-) animals showed complete protection from disease development. The disease severity correlated well with histopathology, including loss of joint architecture, inflammatory cell infiltration, fibrosis, pannus formation, and bone erosion in joints of BLT1/BLT2(+/+) animals and a total absence of disease pathology in leukotriene receptor-deficient mice. Despite these differences, all immunized BLT1(-/-) and BLT1/BLT2(-/-) animals had similar serum levels of anti-collagen Abs relative to BLT1/BLT2(+/+) animals. Thus, BLT1 may be a useful target for therapies directed at treating inflammation associated with arthritis.


Subject(s)
Arthritis, Experimental/metabolism , Arthritis, Experimental/prevention & control , Leukotriene B4/metabolism , Receptors, Leukotriene B4/deficiency , Receptors, Leukotriene B4/physiology , Receptors, Purinergic P2/deficiency , Receptors, Purinergic P2/physiology , Animals , Arthritis, Experimental/genetics , Cell Line , Gene Expression Regulation/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, Leukotriene B4/genetics , Receptors, Purinergic P2/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...