Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 132(12): 4141-51, 2010 Mar 31.
Article in English | MEDLINE | ID: mdl-20201573

ABSTRACT

Six new 5-position modified dUTP derivatives connected by a unique amide linkage were synthesized and tested for compatibility with the enzymatic steps of in vitro selection. Six commercially available DNA polymerases were tested for their ability to efficiently incorporate each of these dUTP derivatives during PCR. It was not possible to perform PCR under standard conditions using any of the modified dUTP derivatives studied. In contrast, primer extension reactions of random templates, as well as defined sequence templates, were successful. KOD XL and D. Vent DNA polymerases were found to be the most efficient at synthesizing full-length primer extension product, with all of the dUTP derivatives tested giving yields similar to those obtained with TTP. Several of these modified dUTPs were then used in an in vitro selection experiment comparing the use of modified dUTP derivatives with TTP for selecting aptamers to a protein target (necrosis factor receptor superfamily member 9, TNFRSF9) that had previously been found to be refractory to in vitro selection using DNA. Remarkably, selections employing modified DNA libraries resulted in the first successful isolation of DNA aptamers able to bind TNFRSF9 with high affinity.


Subject(s)
Aptamers, Nucleotide/chemistry , Tumor Necrosis Factor Receptor Superfamily, Member 9/chemistry , Aptamers, Nucleotide/genetics , Aptamers, Nucleotide/metabolism , Base Sequence , Gene Library , Humans , Molecular Sequence Data , Molecular Structure , Polymerase Chain Reaction , Tumor Necrosis Factor Receptor Superfamily, Member 9/genetics , Tumor Necrosis Factor Receptor Superfamily, Member 9/metabolism
2.
Proteomics ; 4(3): 609-18, 2004 Mar.
Article in English | MEDLINE | ID: mdl-14997484

ABSTRACT

Multiplexed photoaptamer-based arrays that allow for the simultaneous measurement of multiple proteins of interest in serum samples are described. Since photoaptamers covalently bind to their target analytes before fluorescent signal detection, the arrays can be vigorously washed to remove background proteins, providing the potential for superior signal-to-noise ratios and lower limits of quantification in biological matrices. Data are presented here for a 17-plex photoaptamer array exhibiting limits of detection below 10 fM for several analytes including interleukin-16, vascular endothelial growth factor, and endostatin and able to measure proteins in 10% serum samples. The assays are simple, scalable, and reproducible. Affinity of the capture reagent is shown to be directly correlated to the limit of detection for the analyte on the array.


Subject(s)
Protein Array Analysis/instrumentation , Protein Array Analysis/methods , Proteomics/methods , Antibodies/chemistry , Colonic Neoplasms/diagnosis , Colonic Neoplasms/metabolism , Cross-Linking Reagents/chemistry , Cross-Linking Reagents/pharmacology , DNA/chemistry , Dose-Response Relationship, Drug , Endostatins/chemistry , Endostatins/metabolism , Fibroblast Growth Factor 2/chemistry , Humans , Hydrogen-Ion Concentration , Interleukin-16/metabolism , Kinetics , Light , Lod Score , Neoplasm Metastasis , Oligonucleotides/chemistry , Proteins/chemistry , Tissue Inhibitor of Metalloproteinase-1/chemistry , Vascular Endothelial Growth Factor A/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...