Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Vet Clin Pathol ; 47(4): 539-555, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30476353

ABSTRACT

BACKGROUND: In a previous study, the validation of rat bone marrow (BM) collection, processing, and analysis using the Sysmex XT-2000iV (Sysmex Corporation, Kobe, Japan) hematology analyzer showed that the Sysmex hematology analyzer produced BM differential counts that were comparable to those obtained with microscopic differential counts. OBJECTIVE: This study was conducted to expand the validation of the Sysmex TNCC (total nucleated cell count) and 5-part BM differential in cynomolgus monkeys, Beagle dogs, and CD-1 mice, which are alternate species that are also frequently used in preclinical safety studies. METHODS: The Sysmex 5-part BM differential counts were generated with a two-step process, whereby proliferating and maturing erythroid and myeloid cells were determined by preset gating and lymphocytes were determined using species-specific B- and T-lymphocyte antibodies and a magnetic cell-sorting method (MACS). Agreement with microscopic myelograms with 500-cell differential counts was determined from BM suspensions of 62 cynomolgus monkeys, 47 Beagle dogs, and 44 CD-1 mice. RESULTS: The correlation coefficients between methods for myeloid to erythroid (M:E) ratios in all three species was > 0.928. The Bland-Altman differences between methods were approximately ± 0.3 units for the M:E ratio in dogs and mice, and +0.6 and -0.4 in monkeys. The upper limits of agreement for all three species were ≤7% for maturing myeloid cells, ≤6% for maturing erythroid cells, and ≤4% for proliferating myeloid cells, proliferating erythroid cells, and lymphocytes. CONCLUSIONS: The Sysmex XT-2000iV produces an automated M:E ratio and a 5-part differential count equivalent to microscopic differential counts in cynomolgus monkeys, Beagle dogs, and CD-1 mice.


Subject(s)
Bone Marrow Cells/cytology , Cell Count/veterinary , Animals , Autoanalysis/instrumentation , Autoanalysis/veterinary , Cell Count/instrumentation , Dogs/anatomy & histology , Female , Macaca fascicularis/anatomy & histology , Male , Mice/anatomy & histology , Mice, Inbred C57BL/anatomy & histology , Reproducibility of Results
2.
Vet Clin Pathol ; 43(2): 137-53, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24798181

ABSTRACT

BACKGROUND: In a previous study, it was demonstrated that bone marrow analysis using the Sysmex XT-2000iV hematology analyzer produced differential counts in untreated rats that were comparable to microscopic differential counts. OBJECTIVE: The aim of this study was to modulate hematopoiesis in rats in vivo either through pharmacologic treatment or serial phlebotomy, and to determine whether the Sysmex XT-2000iV could accurately analyze bone marrow quantitative changes when compared with results obtained by microscopy. METHODS: Rats were treated once with 0, 5, 20, and 40 mg/kg cyclophosphamide (CP), 0, 50, 100 IU/kg erythropoietin (EPO) on 4 consecutive days, or serial phlebotomy of 1-2 mL of blood for 4 days. Modulation of hematopoietic populations in bone marrow was evaluated using the Sysmex XT-2000iV hematology analyzer, and compared with microscopic differential counts. RESULTS: Correlation coefficients between M:E ratios determined by Sysmex and the microscopic method were 0.94, 0.96, and 0.98 for CP, EPO, or serial phlebotomy treatments, respectively. Mean concordance correlation coefficients for M:E demonstrated method agreement of 0.63, 0.92, and 0.85 for the 3 treatments. Quantitative automated and microscopic bone marrow differential counts were within the expected 95% confidence intervals for CP, EPO or serial phlebotomy. CONCLUSIONS: The Sysmex XT-2000iV provides quantitative bone marrow differential counts of bone marrow cell series in rats with treatment-induced changes which are comparable to microscopic differential counts. Reliable automatic bone marrow differential counting allows increased throughput, sensitivity, reproducibility, and enhanced interpretation of bone marrow evaluation in rodent preclinical studies.


Subject(s)
Bone Marrow Cells/cytology , Cyclophosphamide/pharmacology , Erythropoietin/pharmacology , Immunosuppressive Agents/pharmacology , Animals , Bone Marrow Cells/drug effects , Cell Count/veterinary , Cell Proliferation/drug effects , Cell Survival/drug effects , Drug Evaluation, Preclinical/veterinary , Female , Lymphocytes/cytology , Lymphocytes/drug effects , Male , Myeloid Cells/cytology , Myeloid Cells/drug effects , Phlebotomy/veterinary , Rats , Rats, Wistar , Reproducibility of Results , Sensitivity and Specificity
3.
Vet Clin Pathol ; 43(2): 125-36, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24597677

ABSTRACT

BACKGROUND: Preclinical drug trials frequently require assessment of bone marrow toxicity in animals to evaluate hematopoietic safety. Since the gold standard, cytologic evaluation, is time consuming and requires highly trained individuals, automated methods remain intriguing. OBJECTIVE: The Sysmex XT-2000iV hematology analyzer allows user-developed customizable gating. This study was conducted to validate the gating of bone marrow cell populations in Sysmex cytograms from untreated rats. METHODS: B- and T-lymphocytes and myeloid cells were experimentally depleted from Charles River Wistar Han IGS (CRL: WI [Han]) rat whole bone marrow suspension using a magnetic cell sorting (MACS) method. The positively and negatively selected populations were used to verify select gates within the Sysmex cytogram. Intra- and inter-animal precision, comparability between right and left femur, as well as agreement with microscopic myelograms based on 500 counted cells, were determined. RESULTS: Intra-sample precision and right-to-left femur comparability confirmed that gating was reproducible and stable. In 50 tested rats, myeloid to erythroid ratios (M:E) were 1.32 ± 0.33 in males and 1.38 ± 0.29 in females by Sysmex compared to 1.36 ± 0.32 in males and 1.42 ± 0.32 in females by microscopic evaluations. Bland-Altman differences between methods was ≤ ± 0.35 units for M:E, ≤ 5.4% for maturing myeloid cells, ≤ 3.4% for proliferating myeloid cells, ≤ 6.0% for maturing myeloid cells, ≤ 3.4% for proliferating myeloid cells, and ≤ 4.1% for lymphocytes. CONCLUSIONS: In untreated control Charles River Wistar Han IGS (CRL: WI [Han]) rats, the Sysmex XT-2000iV produced an automated M:E and 5-part differential count equivalent to microscopic differential counts.


Subject(s)
Autoanalysis/veterinary , Bone Marrow Cells/cytology , Animals , Autoanalysis/instrumentation , Bone Marrow Examination/veterinary , Cell Count/veterinary , Cell Proliferation , Cell Survival , Drug Evaluation, Preclinical/veterinary , Erythroid Cells/cytology , Female , Flow Cytometry/instrumentation , Flow Cytometry/veterinary , Lymphocytes/cytology , Male , Myeloid Cells/cytology , Rats , Rats, Wistar , Reproducibility of Results
4.
J Biol Chem ; 278(24): 21972-9, 2003 Jun 13.
Article in English | MEDLINE | ID: mdl-12690106

ABSTRACT

Oxazolidinone antibiotics, an important new class of synthetic antibacterials, inhibit protein synthesis by interfering with ribosomal function. The exact site and mechanism of oxazolidinone action has not been elucidated. Although genetic data pointed to the ribosomal peptidyltransferase as the primary site of drug action, some biochemical studies conducted in vitro suggested interaction with different regions of the ribosome. These inconsistent observations obtained in vivo and in vitro have complicated the understanding of oxazolidinone action. To localize the site of oxazolidinone action in the living cell, we have cross-linked a photoactive drug analog to its target in intact, actively growing Staphylococcus aureus. The oxazolidinone cross-linked specifically to 23 S rRNA, tRNA, and two polypeptides. The site of cross-linking to 23 S rRNA was mapped to the universally conserved A-2602. Polypeptides cross-linked were the ribosomal protein L27, whose N terminus may reach the peptidyltransferase center, and LepA, a protein homologous to translation factors. Only ribosome-associated LepA, but not free protein, was cross-linked, indicating that LepA was cross-linked by the ribosome-bound antibiotic. The evidence suggests that a specific oxazolidinone binding site is formed in the translating ribosome in the immediate vicinity of the peptidyltransferase center.


Subject(s)
Anti-Bacterial Agents/pharmacology , Cross-Linking Reagents/pharmacology , Oxazolidinones/pharmacology , Protein Synthesis Inhibitors/pharmacology , Amino Acid Sequence , Binding Sites , Electrophoresis, Polyacrylamide Gel , Models, Chemical , Models, Genetic , Models, Molecular , Molecular Sequence Data , Nucleic Acid Conformation , Peptides/chemistry , Protein Binding , Protein Conformation , Protein Structure, Tertiary , RNA/metabolism , RNA, Ribosomal, 23S/metabolism , RNA, Transfer/metabolism , Staphylococcus aureus/metabolism , Transcription Factors/chemistry
5.
Acta Crystallogr D Biol Crystallogr ; 58(Pt 12): 2153-6, 2002 Dec.
Article in English | MEDLINE | ID: mdl-12454484

ABSTRACT

In bacteria the biosynthesis of all nascent polypeptides begins with N-formylmethionine. The post-translational removal of the N-formyl group is carried out by peptide deformylase (PDF). Processing of the N-formyl group from critical bacterial proteins is required for cell survival. This formylation/deformylation cycle is unique to eubacteria and is not utilized in eucaryotic cytosolic protein biosynthesis. Thus, inhibition of PDF would halt bacterial growth, spare host cell-function, and would be a novel mechanism for a new class of antibiotic. Diffraction-quality Se-met crystals of S. aureus PDF were prepared that belong to space group C222(1) with unit cell parameters of a = 94.1 b = 121.9 c = 47.6 A. Multiple anomalous dispersion data were collected at the Advanced Photon Source 17-ID beamline and used to solve the PDF structure to 1.9 A resolution. Crystals were also prepared with three PDF inhibitors: thiorphan, actinonin and PNU-172550. The thiorphan and actinonin co-crystals belong to space group C222(1) with similar unit-cell dimensions. Repeated attempts to generate a complex structure of PDF with PNU-172550 from the orthorhombic space group were unsuccessful. Crystallization screening identified an alternate C2 crystal form with unit-cell dimensions of a = 93.4 b = 42.5 c = 104.1 A, beta = 93 degrees.


Subject(s)
Amidohydrolases , Aminopeptidases/chemistry , Enzyme Inhibitors/chemistry , Staphylococcus aureus/enzymology , Aminopeptidases/antagonists & inhibitors , Crystallization , Crystallography, X-Ray , Enzyme Inhibitors/pharmacology , Protein Conformation
6.
J Biol Chem ; 277(34): 31163-71, 2002 Aug 23.
Article in English | MEDLINE | ID: mdl-12048187

ABSTRACT

The first crystal structure of Class II peptide deformylase has been determined. The enzyme from Staphylococcus aureus has been overexpressed and purified in Escherichia coli and the structure determined by x-ray crystallography to 1.9 A resolution. The purified iron-enriched form of S. aureus peptide deformylase enzyme retained high activity over many months. In contrast, the iron-enriched form of the E. coli enzyme is very labile. Comparison of the two structures details many differences; however, there is no structural explanation for the dramatic activity differences we observed. The protein structure of the S. aureus enzyme reveals a fold similar, but not identical to, the well characterized E. coli enzyme. The most striking deviation of the S. aureus from the E. coli structure is the unique conformation of the C-terminal amino acids. The distinctive C-terminal helix of the latter is replaced by a strand in S. aureus which wraps around the enzyme, terminating near the active site. Although there are no differences at the amino acid level near the active site metal ion, significant changes are noted in the peptide binding cleft which may play a role in the design of general peptide deformylase inhibitors.


Subject(s)
Amidohydrolases , Aminopeptidases/chemistry , Bacterial Proteins/chemistry , Staphylococcus aureus/enzymology , Amino Acid Sequence , Aminopeptidases/antagonists & inhibitors , Crystallization , Drug Design , Enzyme Inhibitors/pharmacology , Escherichia coli/enzymology , Magnetic Resonance Spectroscopy , Molecular Sequence Data , Protein Structure, Secondary
SELECTION OF CITATIONS
SEARCH DETAIL
...