Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
Add more filters










Publication year range
1.
J Thromb Haemost ; 13 Suppl 1: S106-14, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26149011

ABSTRACT

Group A streptococci (GAS) express soluble and surface-bound virulence factors. Secreted streptokinase (SK) allelic variants exhibit varying abilities to activate host plasminogen (Pg), and GAS pathogenicity is associated with Pg activation and localization of the resulting plasmin (Pm) on the bacterial surface to promote dissemination. The various mechanisms by which GAS usurp the host proteolytic system are discussed, including the molecular sexuality mechanism of conformational activation of the Pg zymogen (Pg*) and subsequent proteolytic activation of substrate Pg by the S•KPg* and SK•Pm catalytic complexes. Substantial progress has been made to delineate both processes in a unified mechanism. Pm coats the bacteria by direct and indirect binding pathways involving plasminogen-binding group A streptococcal M-like (PAM) protein and host fibrin(ogen). Transgenic mouse models using human Pg are being optimized to mimic infections by SK variants in humans and to define in vivo combined mechanisms of these variants and PAM.


Subject(s)
Fibrinolysin/metabolism , Fibrinolysis , Plasminogen/metabolism , Streptococcal Infections/blood , Streptococcus pyogenes/enzymology , Streptokinase/metabolism , Virulence Factors/metabolism , Animals , Bacterial Proteins/metabolism , Carrier Proteins/metabolism , Fibrin/metabolism , Host-Pathogen Interactions , Humans , Models, Molecular , Protein Binding , Streptococcal Infections/microbiology , Streptococcus pyogenes/pathogenicity , Virulence
2.
Phys Biol ; 8(1): 015014, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21301066

ABSTRACT

The routine observation of tumor emboli in the peripheral blood of patients with carcinomas raises questions about the clinical relevance of these circulating tumor cells. Thrombosis is a common clinical manifestation of cancer, and circulating tumor cells may play a pathogenetic role in this process. The presence of coagulation-associated molecules on cancer cells has been described, but the mechanisms by which circulating tumor cells augment or alter coagulation remains unclear. In this study we utilized suspensions of a metastatic adenocarcinoma cell line, MDA-MB-231, and a non-metastatic breast epithelial cell line, MCF-10A, as models of circulating tumor cells to determine the thrombogenic activity of these blood-foreign cells. In human plasma, both metastatic MDA-MB-231 cells and non-metastatic MCF-10A cells significantly enhanced clotting kinetics. The effect of MDA-MB-231 and MCF-10A cells on clotting times was cell number-dependent and inhibited by a neutralizing antibody to tissue factor (TF) as well as inhibitors of activated factor X and thrombin. Using fluorescence microscopy, we found that both MDA-MB-231 and MCF-10A cells supported the binding of fluorescently labeled thrombin. Furthermore, in a model of thrombus formation under pressure-driven flow, MDA-MB-231 and MCF-10A cells significantly decreased the time to occlusion. Our findings indicate that the presence of breast epithelial cells in blood can stimulate coagulation in a TF-dependent manner, suggesting that tumor cells that enter the circulation may promote the formation of occlusive thrombi under shear flow conditions.


Subject(s)
Adenocarcinoma/complications , Breast Neoplasms/complications , Breast Neoplasms/secondary , Thrombosis/etiology , Blood Coagulation , Cell Line , Cell Line, Tumor , Female , Humans
3.
J Thromb Haemost ; 5 Suppl 1: 81-94, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17635714

ABSTRACT

The specificity of blood coagulation proteinases for substrate, inhibitor, and effector recognition is mediated by exosites on the surfaces of the catalytic domains, physically separated from the catalytic site. Some thrombin ligands bind specifically to either exosite I or II, while others engage both exosites. The involvement of different, overlapping constellations of exosite residues enables binding of structurally diverse ligands. The flexibility of the thrombin structure is central to the mechanism of complex formation and the specificity of exosite interactions. Encounter complex formation is driven by electrostatic ligand-exosite interactions, followed by conformational rearrangement to a stable complex. Exosites on some zymogens are in low affinity proexosite states and are expressed concomitant with catalytic site activation. The requirement for exosite expression controls the specificity of assembly of catalytic complexes on the coagulation pathway, such as the membrane-bound factor Xa*factor Va (prothrombinase) complex, and prevents premature assembly. Substrate recognition by prothrombinase involves a two-step mechanism with initial docking of prothrombin to exosites, followed by a conformational change to engage the FXa catalytic site. Prothrombin and its activation intermediates bind prothrombinase in two alternative conformations determined by the zymogen to proteinase transition that are hypothesized to involve prothrombin (pro)exosite I interactions with FVa, which underpin the sequential activation pathway. The role of exosites as the major source of substrate specificity has stimulated development of exosite-targeted anticoagulants for treatment of thrombosis.


Subject(s)
Blood Coagulation Factors/metabolism , Blood Coagulation , Blood Coagulation Factors/chemistry , Humans , Models, Molecular , Substrate Specificity
4.
Cell Mol Life Sci ; 61(22): 2793-8, 2004 Nov.
Article in English | MEDLINE | ID: mdl-15558209

ABSTRACT

Staphylocoagulase (SC) secreted by Staphylococcus aureus is a potent non-proteolytic activator of the blood coagulation zymogen prothrombin and the prototype of a newly established zymogen activator and adhesion protein (ZAAP) family. The conformationally activated SC.prothrombin complex specifically cleaves fibrinogen to fibrin, which propagates the growth of bacteria-fibrin-platelet vegetations in acute bacterial endocarditis. Our recent 2.2 A X-ray crystal structures of an active SC fragment [SC(1-325)] bound to the prothrombin zymogen catalytic domain, prethrombin 2, demonstrated that SC(1-325) represents a new type of non-proteolytic activator with a unique fold. The observed insertion of the SC(1-325) N-terminus into the 'Ile 16' cleft of prethrombin 2, which triggers the activating conformational change, provided the first unambiguous structural evidence for the 'molecular sexuality' mechanism of non-proteolytic zymogen activation. Based on the SC(1-325) fold, a new family of bifunctional zymogen activator and adhesion proteins was identified that possess N-terminal domains homologous to SC(1-325) and C-terminal domains that mediate adhesion to plasma or extracellular matrix proteins. Further investigation of the ZAAP family may lead to new insights into the mechanisms of bacterial factors that hijack zymogens of the human blood coagulation and fibrinolytic systems to promote and disseminate endocarditis and other infectious diseases.


Subject(s)
Coagulase/metabolism , Enzyme Precursors/metabolism , Staphylococcus aureus/enzymology , Coagulase/chemistry , Endocarditis, Bacterial/etiology , Enzyme Precursors/chemistry , Fibrinogen/metabolism , Humans , Platelet Membrane Glycoproteins/metabolism , Protein Conformation , Prothrombin/chemistry , Prothrombin/metabolism , Receptors, Cell Surface/metabolism , Staphylococcal Infections/etiology , Staphylococcus aureus/pathogenicity , Substrate Specificity
5.
Anal Biochem ; 296(2): 254-61, 2001 Sep 15.
Article in English | MEDLINE | ID: mdl-11554721

ABSTRACT

Biotin derivatives of peptide chloromethyl ketones have ideal properties for specific labeling of the catalytic sites of serine proteinases but have not been widely used as probes because of the difficulty of synthesis and their instability. To make the reagents more accessible, a simple, economical method was developed for preparation of three biotin derivatives of the thrombin-specific inhibitor D-Phe-Pro-Arg-CH2Cl containing increasing lengths of the spacer connecting biotin. Reaction of the peptide with biotin-succinimidyl esters and purification by conventional chromatography yielded the compounds in 91-96% purity. The biotin-labeled inhibitors bound avidin with stoichiometries of 0.88-1.02 mol biotin compound/mol avidin subunits and irreversibly inactivated human thrombin with stoichiometries of 0.89-1.10 mol inhibitor/mol thrombin. Comparison of the three inhibitors by Western blotting indicated that a > or = 7- to 14-atom spacer was needed for sensitive (approximately 10 ng) detection of thrombin, with the derivative lacking a spacer only weakly detected because of its greatly reduced affinity for avidin. Application of the compounds to identify catalytically active products of factor Xa-catalyzed human prethrombin 1 activation in the absence of the protein cofactor, factor Va, allowed the direct observation of transient, low levels of the active intermediate, meizothrombin des-fragment 1, in addition to thrombin. Formation of this intermediate is concluded to reflect an intrinsic property of factor Xa activation of prethrombin 1 that is modulated by factor Va. The methods developed for preparation and characterization of the biotin-labeled inhibitors may be applicable to other tripeptide chloromethyl ketones, and the reagents can be employed for labeling of serine proteinases of diverse substrate specificity.


Subject(s)
Biotin/chemistry , Oligopeptides/metabolism , Serine Endopeptidases/metabolism , Thrombin/metabolism , Affinity Labels/chemistry , Affinity Labels/metabolism , Binding Sites , Enzyme Precursors/metabolism , Oligopeptides/chemistry , Prothrombin/metabolism
6.
Protein Sci ; 10(9): 1897-904, 2001 Sep.
Article in English | MEDLINE | ID: mdl-11514680

ABSTRACT

Bothrojaracin (BJC) is a 27-kD snake venom protein from Bothrops jararaca that has been characterized as a potent thrombin inhibitor. BJC binds to exosites I and II, with a dissociation constant of 0.7 nM, and influences but does not block the proteinase catalytic site. BJC also binds prothrombin through an interaction that has not been characterized. In the present work we characterize the interaction of BJC with prothrombin quantitatively for the first time, and identify the BJC binding site on human prothrombin. Gel filtration chromatography demonstrated calcium-independent, 1:1 complex formation between fluorescein-labeled BJC ([5F]BJC) and prothrombin, whereas no interactions were observed with activation fragments 1 or 2 of prothrombin. Isothermal titration calorimetry showed that binding of BJC to prothrombin is endothermic, with a dissociation constant of 76 +/- 32 nM. The exosite I-specific ligand, hirudin(54-65) (Hir(54-65) (SO(3)(-)), displaced competitively [5F]BJC from prothrombin. Titration of the fluorescent hirudin(54-65) derivative, [5F]Hir(54-65)(SO(3)(-)), with human prothrombin showed a dissociation constant of 7.0 +/- 0.2 microM, indicating a approximately 100-fold lower binding affinity than that exhibited by BJC. Both ligands, however, displayed a similar, approximately 100-fold increase in affinity for exosite I when prothrombin was activated to thrombin. BJC efficiently displaced [5F]Hir(54-65)(SO(3)(-)) from complexes formed with thrombin or prothrombin with dissociation constants of 0.7 +/- 0.9 nM and 11 +/- 80 nM, respectively, indicating that BJC and Hir(54-65)(SO(3)(-)) compete for the same exosite on these molecules. The results indicate that BJC is a potent and specific probe of the partially exposed anion-binding exosite (proexosite I) of human prothrombin.


Subject(s)
Bothrops , Crotalid Venoms/chemistry , Crotalid Venoms/metabolism , Prothrombin/chemistry , Prothrombin/metabolism , Animals , Binding, Competitive , Calorimetry , Chromatography, Gel , Fluorescence Polarization , Humans , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Protein Binding , Thermodynamics , Thrombin/antagonists & inhibitors , Thrombin/metabolism
7.
J Biol Chem ; 276(28): 26084-9, 2001 Jul 13.
Article in English | MEDLINE | ID: mdl-11369771

ABSTRACT

Cleavage of Arg(561)-Val(562) in plasminogen (Pg) generates plasmin (Pm) through a classical activation mechanism triggered by an insertion of the new amino terminus into a binding pocket in the Pg catalytic domain. Streptokinase (SK) circumvents this process and activates Pg through a unique nonproteolytic mechanism postulated to be initiated by the intrusion of Ile(1) of SK in place of Val(562). This hypothesis was evaluated in equilibrium binding and kinetic studies of Pg activation with an SK mutant lacking Ile(1) (SK(2--414)). SK(2--414) retained the affinity of native SK for fluorescein-labeled [Lys]Pg and [Lys]Pm but induced no detectable conformational activation of Pg. The activity of SK(2--414) was partially restored by the peptides SK(1--2), SK(1--5), SK(1--10), and SK(1--15), whereas Pg(562--569) peptides were much less effective. Active site-specific fluorescence labeling demonstrated directly that the active catalytic site was formed on the Pg zymogen by the combination of SK(1--10) and SK(2--414), whereas sequence-scrambled SK(1-10) was inactive. The characterization of SK(1--10) containing single Ala substitutions demonstrated the sequence specificity of the interaction. SK(1--10) did not restore activity to the further truncated mutant SK(55-414), which was correlated with the loss of binding affinity of SK(55--414) for labeled [Lys]Pm but not for [Lys]Pg. The studies support a mechanism for conformational activation in which the insertion of Ile(1) of SK into the Pg amino-terminal binding cleft occurs through sequence-specific interactions of the first 10 SK residues. This event and the preferentially higher affinity of SK(2--414) for the activated proteinase domain of Pm are thought to function cooperatively to trigger the conformational change and stabilize the active zymogen conformation.


Subject(s)
Enzyme Precursors/chemistry , Plasminogen/chemistry , Streptokinase/chemistry , Binding Sites , Humans , Protein Binding , Protein Conformation , Substrate Specificity
8.
FEBS Lett ; 494(1-2): 129-32, 2001 Apr 06.
Article in English | MEDLINE | ID: mdl-11297749

ABSTRACT

The activation of the matrix metalloproteinase progelatinase A (MMP-2) has been of keen interest because an increase in MMP-2 activity has been implicated in disease states such as cancer and atherosclerosis. Activation of MMP-2 occurs on the surface of specific cell types in two steps. In the first step, primary cleavage of MMP-2 by a membrane-type matrix metalloproteinase generates an intermediate. A secondary cleavage and activation of the intermediate is thought to occur autocatalytically. Previous studies have shown that thrombin can also activate progelatinase A in the presence of endothelial cells. We show that this cell-dependent mechanism of MMP-2 activation also occurs with THP-1 cells and involves binding of thrombin to thrombomodulin present on the cell surface and generation of the anti-coagulant protein, activated protein C. We demonstrate that activated protein C is directly responsible for activation and cleavage of the gelatinase A intermediate. This work contributes new mechanistic insights into the activation of MMP-2 and provides a novel link between matrix metalloproteinase activation and anti-coagulation.


Subject(s)
Enzyme Precursors/metabolism , Gelatinases/metabolism , Metalloendopeptidases/metabolism , Protein C/metabolism , Thrombin/metabolism , Thrombomodulin/metabolism , Cell Line , Cells, Cultured , Endothelium, Vascular/cytology , Enzyme Activation , Humans
10.
Biochemistry ; 39(45): 13974-81, 2000 Nov 14.
Article in English | MEDLINE | ID: mdl-11076540

ABSTRACT

Binding of streptokinase (SK) to plasminogen (Pg) activates the zymogen conformationally and initiates its conversion into the fibrinolytic proteinase, plasmin (Pm). Equilibrium binding studies of SK interactions with a homologous series of catalytic site-labeled fluorescent Pg and Pm analogues were performed to resolve the contributions of lysine binding site interactions, associated changes between extended and compact conformations of Pg, and activation of the proteinase domain to the affinity for SK. SK bound to fluorescein-labeled [Glu]Pg(1) and [Lys]Pg(1) with dissociation constants of 624 +/- 112 and 38 +/- 5 nM, respectively, whereas labeled [Lys]Pm(1) bound with a 57000-fold tighter dissociation constant of 11 +/- 2 pM. Saturation of lysine binding sites with 6-aminohexanoic acid had no effect on SK binding to labeled [Glu]Pg(1), but weakened binding to labeled [Lys]Pg(1) and [Lys]Pm(1) 31- and 20-fold, respectively. At low Cl(-) concentrations, where [Glu]Pg assumes the extended conformation without occupation of lysine binding sites, a 23-fold increase in the affinity of SK for labeled [Glu]Pg(1) was observed, which was quantitatively accounted for by expression of new lysine binding site interactions. The results support the conclusion that the SK affinity for the fluorescent Pg and Pm analogues is enhanced 13-16-fold by conversion of labeled [Glu]Pg to the extended conformation of the [Lys]Pg derivative as a result of lysine binding site interactions, and is enhanced 3100-3500-fold further by the increased affinity of SK for the activated proteinase domain. The results imply that binding of SK to [Glu]Pg results in transition of [Glu]Pg to an extended conformation in an early event in the SK activation mechanism.


Subject(s)
Catalytic Domain , Lysine/metabolism , Plasminogen/chemistry , Plasminogen/metabolism , Streptokinase/chemistry , Streptokinase/metabolism , Amino Acid Chloromethyl Ketones/metabolism , Aminocaproic Acid/chemistry , Binding Sites , Chlorides/chemistry , Fibrinolysin/metabolism , Glutamic Acid/metabolism , Humans , Protein Conformation , Serine Proteinase Inhibitors/metabolism
11.
J Biol Chem ; 275(19): 14579-89, 2000 May 12.
Article in English | MEDLINE | ID: mdl-10799544

ABSTRACT

Binding of streptokinase (SK) to plasminogen (Pg) conformationally activates the zymogen and converts both Pg and plasmin (Pm) into specific Pg activators. The interaction of SK with Pm and its relationship to the mechanism of Pg activation were evaluated in equilibrium binding studies with active site-labeled fluorescent Pm derivatives and in kinetic studies of SK-induced changes in the catalytic specificity of Pm. SK bound to fluorescein-labeled and native Pm with dissociation constants of 11 +/- 2 pm and 12 +/- 4 pm, which represented a 1,000-10,000-fold higher affinity than determined for Pg. Stoichiometric binding of SK to native Pm was followed by generation of a two-fragment form of SK cleaved at Lys(59) (SK'), which exhibited an indistinguishable affinity for labeled Pm, while a truncated, SK(55-414) species had a 120-360-fold reduced affinity. Binding of SK to native Pm was accompanied by a >50-fold enhancement in specificity for activation of Pg, which was paralleled by a surprising 2.6-10-fold loss of specificity of Pm for 8 of 11 tripeptide-pNA substrates. Further studies with Pm labeled at the active site with 2-anilinonaphthalene-6-sulfonic acid demonstrated directly that binding of SK to Pm resulted in expression of a new substrate binding exosite for Pg on the SK.Pm complex. It is concluded that SK activates Pg in part by preferential binding to the active zymogen conformation. High affinity binding of SK to Pm enhances Pg substrate specificity principally through emergence of a substrate recognition exosite.


Subject(s)
Fibrinolysin/metabolism , Plasminogen/metabolism , Streptokinase/metabolism , Animals , Binding Sites , Cattle , Fluorescent Dyes , Humans , Hydrolysis , Kinetics , Recombinant Proteins/metabolism , Spectrometry, Fluorescence , Substrate Specificity
12.
J Biol Chem ; 275(22): 16428-34, 2000 Jun 02.
Article in English | MEDLINE | ID: mdl-10748007

ABSTRACT

Activation of prothrombin by factor Xa is accompanied by expression of regulatory exosites I and II on the blood coagulation proteinase, thrombin. Quantitative affinity chromatography and equilibrium binding studies with a fluorescein-labeled derivative of the exosite I-specific peptide ligand, hirudin(54-65) ([5F]Hir(54-65) (SO(3)(-)), were employed to identify and characterize this site on human and bovine prothrombin and its expression on thrombin. [5F]Hir(54-65)(SO(3)(-)) showed distinctive fluorescence excitation spectral differences in complexes with prothrombin and thrombin and bound to human prothrombin and thrombin with dissociation constants of 3.2 +/- 0.3 micrometer and 25 +/- 2 nm, respectively, demonstrating a 130-fold increase in affinity for the active proteinase. The bovine proteins similarly showed a 150-fold higher affinity of [5F]Hir(54-65)(SO(3)(-)) for thrombin compared with prothrombin, despite a 2-5-fold lower affinity of the peptides for the bovine proteins. Unlabeled, Tyr(63)-sulfated and nonsulfated hirudin peptides bound competitively with [5F]Hir(54-65)(SO(3)(-)) to human and bovine prothrombin and thrombin, exhibiting similar, 40-70-fold higher affinities for the proteinases, although nonsulfated Hir(54-65) bound with 7-17-fold lower affinity than the sulfated analog. These studies characterize proexosite I for the first time as a specific binding site for hirudin peptides on both human and bovine prothrombin that is present in a conformationally distinct, low affinity state and is activated with a approximately 100-fold increase in affinity when thrombin is formed.


Subject(s)
Prothrombin/metabolism , Animals , Binding Sites , Binding, Competitive , Catalysis , Cattle , Chromatography, Affinity , Enzyme Activation , Humans , Sulfates/metabolism , Thrombin/metabolism
13.
J Biol Chem ; 275(22): 16435-42, 2000 Jun 02.
Article in English | MEDLINE | ID: mdl-10748008

ABSTRACT

Regulatory exosite I of thrombin is present on prothrombin in a precursor state (proexosite I) that specifically binds the Tyr(63)-sulfated peptide, hirudin(54-65) (Hir(54-65)(SO(3)(-))) and the nonsulfated analog. The role of proexosite I in the mechanism of factor Va acceleration of prothrombin activation was investigated in kinetic studies of the effects of peptide binding. The initial rate of human prothrombin activation by factor Xa was inhibited by the peptides in the presence of factor Va but not in the absence of the cofactor. Factor Xa and factor Va did not bind the peptide with significant affinity compared with prothrombin. Maximum inhibition reduced the factor Va-accelerated rate to a level indistinguishable from the rate in the absence of the cofactor. The effect of Hir(54-65)(SO(3)(-)) on the kinetics of prothrombin activation obeyed a model in which binding of the peptide to proexosite I prevented productive prothrombin interactions with the factor Xa-factor Va complex. Comparison of human and bovine prothrombin as substrates demonstrated a similar correlation between peptide binding and inhibition of factor Va acceleration. Inhibition of prothrombin activation by hirudin peptides was opposed by assembly on phospholipid vesicles of the membrane-bound factor Xa-factor-Va-prothrombin complex. Factor Va interactions of human and bovine prothrombin activation are concluded to share a common mechanism in which proexosite I participates in productive interactions of prothrombin as the substrate of the factor Xa-factor Va complex, possibly by directly mediating productive prothrombin-factor Va binding.


Subject(s)
Factor Va/metabolism , Prothrombin/metabolism , Animals , Binding Sites , Cattle , Chromatography, Affinity , Enzyme Activation , Factor Va/isolation & purification , Factor Xa/isolation & purification , Humans , Kinetics , Protein Binding , Sulfates/metabolism
14.
J Biol Chem ; 274(26): 18635-43, 1999 Jun 25.
Article in English | MEDLINE | ID: mdl-10373475

ABSTRACT

The blood coagulation proteinase, thrombin, converts factor V into factor Va through a multistep activation pathway that is regulated by interactions with thrombin exosites. Thrombin exosite interactions with human factor V and its activation products were quantitatively characterized in equilibrium binding studies based on fluorescence changes of thrombin covalently labeled with 2-anilinonaphthalene-6-sulfonic acid (ANS) linked to the catalytic site histidine residue by Nalpha-[(acetylthio)acetyl]-D-Phe-Pro-Arg-CH2Cl ([ANS]FPR-thrombin). Exosite I was shown to play a predominant role in the binding of factor V and factor Va from the effect of the exosite I-specific ligand, hirudin54-65, on the interactions. Factor V and factor Va bound to exosite I of [ANS]FPR-thrombin with similar dissociation constants of 3.4 +/- 1.3 and 1.1 +/- 0.4 microM and fluorescence enhancements of 182 +/- 41 and 127 +/- 17%, respectively. Native thrombin and labeled thrombin bound with similar affinity to factor Va. Among factor V activation products, the factor Va heavy chain was shown to contain the site of exosite I binding, whereas exosite I-independent, lower affinity interactions were observed for activation fragments E and C1, and no detectable binding was observed for the factor Va light chain. The results support the conclusion that the factor V activation pathway is initiated by exosite I-mediated binding of thrombin to a site in the heavy chain region of factor V that facilitates the initial cleavage at Arg709 to generate the heavy chain of factor Va. The results further suggest that binding of thrombin through exosite I to factor V activation intermediates may regulate their conversion to factor Va and that similar binding of thrombin to the factor Va produced may reflect a mode of interaction involved in the regulation of prothrombin activation.


Subject(s)
Factor V/metabolism , Factor Va/metabolism , Peptide Fragments/metabolism , Thrombin/metabolism , Anilino Naphthalenesulfonates/metabolism , Animals , Binding Sites , Cattle , Fluorescent Dyes/metabolism , Humans , Models, Chemical , Protein Conformation
15.
Biochemistry ; 37(43): 15057-65, 1998 Oct 27.
Article in English | MEDLINE | ID: mdl-9790668

ABSTRACT

We previously isolated a monoclonal antithrombin IgG from a patient with multiple myeloma [Colwell et al. (1997) Br. J. Haematol. 97, 219-226]. Using a panel of 55 surface mutants of recombinant thrombin, we now show that the epitope for the IgG most likely includes Arg-101, Arg-233, and Lys-236 in exosite II. The IgG affects the rate at which thrombin cleaves various peptide p-nitroanilide substrates with arginine in the P1 position, increasing the kcat for substrates with a P2 glycine residue but generally decreasing the kcat for substrates with a P2 proline. The allosteric effect of the IgG is altered by deletion of Pro-60b, Pro-60c, and Trp-60d from the 60-loop of thrombin, which lies between exosite II and the catalytic triad. The effect of the IgG, however, does not depend on the presence or absence of sodium ions, a known allosteric regulator of thrombin. The IgG does not affect the conformation of thrombin exosite I as determined by binding of a fluorescent derivative of hirudin54-65. These results provide evidence for a direct allosteric linkage between exosite II and the catalytic site of thrombin.


Subject(s)
Antibodies, Monoclonal/pharmacology , Thrombin/immunology , Thrombin/metabolism , Allosteric Regulation/immunology , Animals , Antibodies, Monoclonal/metabolism , Binding Sites/genetics , Binding Sites/immunology , COS Cells , Cations, Monovalent , Enzyme Activation/genetics , Enzyme Activation/immunology , Epitopes/immunology , Epitopes/metabolism , Hirudins/immunology , Hirudins/metabolism , Humans , Immunoglobulin Fab Fragments/metabolism , Immunoglobulin Fab Fragments/pharmacology , Immunoglobulin G/metabolism , Models, Molecular , Multiple Myeloma/immunology , Peptide Fragments/immunology , Peptide Fragments/metabolism , Recombinant Proteins/immunology , Recombinant Proteins/metabolism , Sodium/physiology , Thrombin/genetics
16.
Biochemistry ; 37(38): 13143-52, 1998 Sep 22.
Article in English | MEDLINE | ID: mdl-9748321

ABSTRACT

In an essential step of blood coagulation, factor V is proteolytically processed by thrombin to generate the activated protein cofactor, factor Va, and to release the activation fragments E and C1. For the identification and characterization of sites of thrombin binding to factor V and its activation products, a new method was developed for immobilizing thrombin and other serine proteinases specifically (>/=92%) through their active sites and used in affinity chromatography studies of the interactions. Interactions of factor V with exosite I of thrombin were shown to regulate the factor V activation pathway from the 93% +/- 12% inhibition of the rate of activation correlated with specific binding of hirudin54-65 to this exosite. Chromatography of factor V on active-site-immobilized thrombin showed only a weak interaction, while the factor Va heterodimer bound specifically and with apparently higher affinity, in an interaction that was prevented by hirudin54-65. The heavy chain of subunit-dissociated factor Va bound to immobilized thrombin, while the light-chain subunit and fragment E had no detectable affinity. These results demonstrate a previously undescribed, exosite I-dependent interaction of thrombin with factor Va that occurs through the factor Va heavy chain. They support the further conclusion that similar exosite I-dependent binding of thrombin to the heavy-chain region of factor V contributes to recognition of factor V as a specific thrombin substrate and thereby regulates proteolytic activation of the protein cofactor.


Subject(s)
Enzymes, Immobilized/metabolism , Factor V/metabolism , Factor Va/metabolism , Serine Endopeptidases/metabolism , Thrombin/metabolism , Binding Sites/drug effects , Chromatography, Affinity/methods , Factor Va/chemistry , Factor Va/drug effects , Hirudins/pharmacology , Humans , Hydrolysis , Peptide Fragments/pharmacology , Sepharose/metabolism , Substrate Specificity
17.
J Biol Chem ; 272(32): 19837-45, 1997 Aug 08.
Article in English | MEDLINE | ID: mdl-9242645

ABSTRACT

Exosite I of the blood clotting proteinase, thrombin, mediates interactions of the enzyme with certain inhibitors, physiological substrates and regulatory proteins. Specific binding of a fluorescein-labeled derivative of the COOH-terminal dodecapeptide of hirudin ([5F] Hir54-65) to exosite I was used to probe changes in the function of the regulatory site accompanying inactivation of thrombin by its physiological serpin inhibitor, antithrombin. Fluorescence-monitored equilibrium binding studies showed that [5F]Hir54-65 and Hir54-65 bound to human alpha-thrombin with dissociation constants of 26 +/- 2 nM and 38 +/- 5 nM, respectively, while the affinity of the peptides for the stable thrombin-antithrombin complex was undetectable (>/=200-fold weaker). Kinetic studies showed that the loss of binding sites for [5F]Hir54-65 occurred with the same time-course as the loss of thrombin catalytic activity. Binding of [5F] Hir54-65 and Hir54-65 to thrombin was correlated quantitatively with partial inhibition of the rate of the thrombin-antithrombin reaction, maximally decreasing the bimolecular rate constants 1.7- and 2.1-fold, respectively. These results support a mechanism in which thrombin and the thrombin-Hir54-65 complex can associate with antithrombin and undergo formation of the covalent thrombin-antithrombin complex at modestly different rates, with inactivation of exosite I leading to dissociation of the peptide occurring subsequent to the rate-limiting inactivation of thrombin. This mechanism may function physiologically in localizing the activity of thrombin by allowing inactivation of thrombin that is bound in exosite I-mediated complexes with regulatory proteins, such as thrombomodulin and fibrin, without prior dissociation of these complexes. Concomitant with inactivation of thrombin, the thrombin-antithrombin complex may be irreversibly released due to exosite I inactivation.


Subject(s)
Antithrombin III/metabolism , Thrombin/metabolism , Binding Sites , Binding, Competitive , Catalysis , Hirudins/metabolism , Humans , Kinetics , Macromolecular Substances , Spectrometry, Fluorescence
19.
J Biol Chem ; 271(42): 26088-95, 1996 Oct 18.
Article in English | MEDLINE | ID: mdl-8824251

ABSTRACT

Interaction of the blood clotting proteinase, thrombin, with fibrin monomer and heparin to form a thrombin.fibrin monomer.heparin ternary complex is accompanied by a change in thrombin catalytic specificity. Equilibrium binding interactions in the assembly of the ternary complex were characterized quantitatively using thrombin labeled at the active site with a fluorescent probe and related to changes in thrombin specificity toward exosite I-dependent binding of hirudin and cleavage of fibrinogen. Changes in the active site environment accompanying binding of heparin or fibrin to thrombin in binary complexes were reported by fluorescence enhancements which contributed additively to the perturbation accompanying formation of the ternary complex. Quantitative analysis of the interactions supports a preferentially ordered path of ternary complex assembly, in which initial binding of heparin to thrombin facilitates binding of fibrin monomer with an approximately 40-fold increased affinity. Binding of fibrin monomer in the ternary complex decreased the affinity of native thrombin for hirudin by >100-fold and inhibited cleavage of fibrinogen, but this inhibition was overcome when fibrin(ogen)-fibrin interactions occurred. These results support a ternary complex model in which heparin binding through exosite II of thrombin facilitates fibrin monomer binding via exosite I, with accompanying changes in thrombin catalytic specificity resulting from perturbations in the active site and reduced accessibility of exosite I to hirudin and fibrinogen.


Subject(s)
Fibrin Fibrinogen Degradation Products/metabolism , Fibrinogen/metabolism , Heparin/metabolism , Hirudins/metabolism , Thrombin/metabolism , Anilino Naphthalenesulfonates/metabolism , Binding Sites , Catalysis , Humans , Protein Conformation , Spectrometry, Fluorescence
20.
J Biol Chem ; 271(2): 1072-80, 1996 Jan 12.
Article in English | MEDLINE | ID: mdl-8557633

ABSTRACT

Fluorescent analogs of the proteinase zymogen, plasminogen (Pg), which are specifically inactivated and labeled at the catalytic site have been prepared and characterized as probes of the mechanisms of Pg activation. The active site induced non-proteolytically in Pg by streptokinase (SK) was inactivated stoichiometrically with the thioester peptide chloromethyl ketone. N alpha-[(acetylthio)acetyl]-(D-Phe)-Phe-Arg-CH2Cl; the thiol group generated subsequently on the incorporated inhibitor with NH2OH was quantitatively labeled with the fluorescence probe, 2-((4'-iodoacetamido)anilino)naphthalene-6-sulfonic acid; and the labeled Pg was separated from SK. Cleavage of labeled [Glu]Pg1 by urokinase-type plasminogen activator (uPA) was accompanied by a fluorescence enhancement (delta Fmax/Fo) of 2.0, and formation of 1% plasmin (Pm) activity. Comparison of labeled and native [Glu]Pg1 as uPA substrates showed that activation of labeled [Glu]Pg1 generated [Glu]Pm1 as the major product, while native [Glu]Pg1 was activated at a faster rate and produced [Lys]Pm1 because of concurrent proteolysis by plasmin. When a mixture of labeled and native Pg was activated, to include plasmin-feedback reactions, the zymogens were activated at equivalent rates. The lack of potential proteolytic activity of the Pg derivatives allowed their interactions with SK to be studied under equilibrium binding conditions. SK bound to labeled [Glu]Pg1, and [Lys]Pg1 with dissociation constants of 590 +/- 110 and 110 and 11 +/- 7 nM, and fluorescence enhancements of 3.1 +/- 0.1 and 1.6 +/- 0.1, respectively. Characterization of the interaction of SK with native [Glu]Pg1 by the use of labeled [Glu]Pg1 as a probe indicated a approximately 6-fold higher affinity of SK for the native Pg zymogen compared to the labeled Pg analog. Saturating levels of epsilon-aminocaproic acid reduced the affinity of SK for labeled [Glu]Pg1 by approximately 2-fold and lowered the fluorescence enhancement to 1.8 +/- 0.1, whereas the affinity of SK for labeled [Lys]Pg1 was reduced by approximately 98-fold with little effect on the enhancement. These results demonstrate that occupation of lysine binding sites modulates the affinity of SK for Pg and the changes in the environment of the catalytic site associated with SK-induced conformational activation. Together, these studies show that the labeled Pg derivatives behave as analogs of native Pg which report functionally significant changes in the environment of the catalytic site of the zymogen.


Subject(s)
Enzyme Precursors/metabolism , Naphthalenesulfonates/metabolism , Plasminogen/metabolism , Streptokinase/metabolism , Fluorescent Dyes/metabolism , Humans , Plasminogen/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...