Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Org Lett ; 26(16): 3338-3342, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38608176

ABSTRACT

Isoquinolone is one of the most common heterocyclic core structures in countless natural products and many bioactive compounds. Here, a highly efficient approach to synthesize isoquinolone scaffolds on DNA via rhodium(III)-catalyzed C-H activation has been described. This chemistry transformation is robust and has shown good compatibility with DNA, which is suitable for DNA-encoded library synthesis.


Subject(s)
DNA , Rhodium , Rhodium/chemistry , Catalysis , Molecular Structure , DNA/chemistry , Isoquinolines/chemistry , Isoquinolines/chemical synthesis
2.
J Phys Chem B ; 117(11): 3086-90, 2013 Mar 21.
Article in English | MEDLINE | ID: mdl-23480041

ABSTRACT

Transport of a hole along the base stack of DNA is relatively facile for a series of adenines (As) paired with thymines (Ts) or for a series of guanines (Gs) paired with cytosines (Cs). However, the speed at which a hole was found to travel was much too small to make useful semiconductor-type devices. Quite recently it was found that replacing one of the electronegative nitrogens (N3 or N7) with a carbon and a hydrogen, thus turning A into deazaadenine, increased the hole speed in what was A/T by a factor 30. To study the effect of the substitution we have carried out simulations for the wave function of a hole on an A/T oligomer with As modified by replacing N3 or N7, or both, with C-H's. The simulations were carried out using QM/MM and the code CP2K. We find, for either N, or both, replaced, the wave function of the hole behaves similarly to that of a hole on A/T in being delocalized immediately after hole insertion for up to ∼20 fs, and then becoming localized on one of the modified As. The time for localization could be decreased by placing additional water within ∼1.8 Šof N3 or N7, encouraging the formation of hydrogen bonds with these nitrogens. Because of their positive charge the hydrogen bonds tend to repel holes. However, these bonds were found to decay on a femtosecond time scale, thus unlikely to affect the hole hopping, which occurs on approximately a nanosecond scale in A/T. Replacement with a C-H of one or both of the electronegative Ns, along with the structural changes that result, is expected to decrease the activation energy and thus account for the larger hole hopping rate in the deaza-modified DNA.


Subject(s)
Adenine/analogs & derivatives , Adenine/chemistry , DNA/chemistry , Models, Molecular , Quantum Theory
3.
Bioorg Med Chem Lett ; 15(1): 81-4, 2005 Jan 03.
Article in English | MEDLINE | ID: mdl-15582415

ABSTRACT

Optimization of P1-substituted pyrrolidinone based HIV protease inhibitors has yielded analogs with very potent antiviral activity.


Subject(s)
HIV Protease Inhibitors/pharmacology , Pyrrolidinones/pharmacology , HIV Protease Inhibitors/chemistry , Models, Molecular , Pyrrolidinones/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...