Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mar Pollut Bull ; 201: 116193, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38428047

ABSTRACT

Natural ecological restoration is a cornerstone of modern conservation science and managers need more documented "success stories" to lead the way. In French mediterranean sea, we monitored Posidonia oceanica lower limit using acoustic telemetry and photogrammetry and investigated the descriptors driving its variations, at a national scale and over more than a decade. We showed significant effects of environmental descriptors (region, sea surface temperature and bottom temperature) but also of wastewater treatment plant (WWTP) effluents proxies (size of WWTP, time since conformity, and distance to the closest effluent) on the meadows lower limit progression. This work indicates a possible positive response of P. oceanica meadows to improvements in wastewater treatment and a negative effect of high temperatures. While more data is needed, the example of French wastewater policy should inspire stakeholders and coastal managers in their efforts to limit anthropogenic pressures on vulnerable ecosystems.


Subject(s)
Alismatales , Ecosystem , Grassland , Mediterranean Sea , Alismatales/physiology , Temperature
2.
Mar Pollut Bull ; 195: 115511, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37708607

ABSTRACT

Large boats can have a major impact on sensitive marine habitats like seagrass meadows when anchoring. The anchoring preference of large boats and their impacts can be mapped using Automatic Identification System (AIS). We found a constant increase in the number of anchoring events with, until recently, a large part of them within the protected Posidonia oceanica seagrass meadows. French authorities adopted a new regulation in 2019 forbidding any anchoring within P. oceanica seagrass meadows for boats larger than 24 m. The number of large ships (>24 m) anchoring in P. oceanica meadows significantly decreased after the enforcement of the regulation. The surface of avoided impact thanks to the new regulation corresponds to 134 to 217 tons of carbon sequestered by the preserved meadow in 2022. This work illustrates that a strict regulation of anchoring, based on accurate habitat maps, is effective in protecting seagrass meadows.


Subject(s)
Alismatales , Mobile Applications , Ecosystem , Alismatales/physiology , Ships , Carbon , Mediterranean Sea
3.
Ecol Evol ; 10(14): 7021-7049, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32760509

ABSTRACT

Scalable assessments of biodiversity are required to successfully and adaptively manage coastal ecosystems. Assessments must account for habitat variations at multiple spatial scales, including the small scales (<100 m) at which biotic and abiotic habitat components structure the distribution of fauna, including fishes. Associated challenges include achieving consistent habitat descriptions and upscaling from in situ-monitored stations to larger scales. We developed a methodology for (a) determining habitat types consistent across scales within large management units, (b) characterizing heterogeneities within each habitat, and (c) predicting habitat from new survey data. It relies on clustering techniques and supervised classification rules and was applied to a set of 3,145 underwater video observations of fish and benthic habitats collected in all reef and lagoon habitats around New Caledonia. A baseline habitat typology was established with five habitat types clearly characterized by abiotic and biotic attributes. In a complex mosaic of habitats, habitat type is an indispensable covariate for explaining spatial variations in fish communities. Habitat types were further described by 26 rules capturing the range of habitat features encountered. Rules provided intuitive habitat descriptions and predicted habitat type for new monitoring observations, both straightforwardly and with known confidence. Images are convenient for interacting with managers and stakeholders. Our scheme is (a) consistent at the scale of New Caledonia reefs and lagoons (1.4 million km2) and (b) ubiquitous by providing data in all habitats, for example, showcasing a substantial fish abundance in rarely monitored soft-bottom habitats. Both features must be part of an ecosystem-based monitoring strategy relevant for management. This is the first study applying data mining techniques to in situ measurements to characterize coastal habitats over regional-scale management areas. This approach can be applied to other types of observations and other ecosystems to characterize and predict local ecological assets for assessments at larger scales.

SELECTION OF CITATIONS
SEARCH DETAIL
...