Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 16(11): e0255262, 2021.
Article in English | MEDLINE | ID: mdl-34793465

ABSTRACT

The diversity of bacteriophages is likely unparalleled in the biome due to the immense variety of hosts and the multitude of viruses that infect them. Recent efforts have led to description at the genomic level of numerous bacteriophages that infect the Actinobacteria, but relatively little is known about those infecting other prokaryotic phyla, such as the purple non-sulfur photosynthetic α-proteobacterium Rhodobacter capsulatus. This species is a common inhabitant of freshwater ecosystems and has been an important model system for the study of photosynthesis. Additionally, it is notable for its utilization of a unique form of horizontal gene transfer via a bacteriophage-like element known as the gene transfer agent (RcGTA). Only three bacteriophages of R. capsulatus had been sequenced prior to this report. Isolation and characterization at the genomic level of 26 new bacteriophages infecting this host advances the understanding of bacteriophage diversity and the origins of RcGTA. These newly discovered isolates can be grouped along with three that were previously sequenced to form six clusters with four remaining as single representatives. These bacteriophages share genes with RcGTA that seem to be related to host recognition. One isolate was found to cause lysis of a marine bacterium when exposed to high-titer lysate. Although some clusters are more highly represented in the sequenced genomes, it is evident that many more bacteriophage types that infect R. capsulatus are likely to be found in the future.


Subject(s)
Bacterial Proteins/genetics , Bacteriophages/genetics , Gene Expression Regulation, Bacterial , Genetic Variation , Rhodobacter capsulatus/virology , Gene Transfer Techniques
2.
Chem Rev ; 121(18): 11527-11652, 2021 09 22.
Article in English | MEDLINE | ID: mdl-33939409

ABSTRACT

The advent of genome editing has transformed the therapeutic landscape for several debilitating diseases, and the clinical outlook for gene therapeutics has never been more promising. The therapeutic potential of nucleic acids has been limited by a reliance on engineered viral vectors for delivery. Chemically defined polymers can remediate technological, regulatory, and clinical challenges associated with viral modes of gene delivery. Because of their scalability, versatility, and exquisite tunability, polymers are ideal biomaterial platforms for delivering nucleic acid payloads efficiently while minimizing immune response and cellular toxicity. While polymeric gene delivery has progressed significantly in the past four decades, clinical translation of polymeric vehicles faces several formidable challenges. The aim of our Account is to illustrate diverse concepts in designing polymeric vectors towards meeting therapeutic goals of in vivo and ex vivo gene therapy. Here, we highlight several classes of polymers employed in gene delivery and summarize the recent work on understanding the contributions of chemical and architectural design parameters. We touch upon characterization methods used to visualize and understand events transpiring at the interfaces between polymer, nucleic acids, and the physiological environment. We conclude that interdisciplinary approaches and methodologies motivated by fundamental questions are key to designing high-performing polymeric vehicles for gene therapy.


Subject(s)
Nucleic Acids , Gene Editing , Gene Transfer Techniques , Genetic Therapy/methods , Polymers/chemistry
3.
ACS Macro Lett ; 10(3): 375-381, 2021 03 16.
Article in English | MEDLINE | ID: mdl-35549060

ABSTRACT

Bottlebrush polymers have great potential as vehicles to noncovalently sequester, stabilize, and deliver hydrophobic small molecule actives. To this end, we synthesized a poly(N-isopropylacrylamide-stat-N,N-dimethylacrylamide) bottlebrush copolymer using ring-opening metathesis polymerization and developed a facile method to control the thermoresponsive properties using postpolymerization modification. Six increasingly hydrophilic end-groups were installed, yielding cloud point temperature control over a range of 22-42 °C. Solubility enhancement of the antiseizure medication, phenytoin, increased significantly with the hydrophilicity of the end-group moiety. Notably, carboxylated bottlebrush copolymers solubilized formulations with higher drug loadings than linear copolymers because they exist as unimolecular nanoparticles with a synthetically defined density of polymer chains that are more stable in solution. This work provides the first investigation of bottlebrush polymers for hydrophobic noncovalent sequestration and solubilization of pharmaceuticals.


Subject(s)
Excipients , Polymers , Excipients/chemistry , Hydrophobic and Hydrophilic Interactions , Polymerization , Polymers/chemistry , Solubility
4.
Curr Med Chem ; 27(25): 4194-4232, 2020.
Article in English | MEDLINE | ID: mdl-30663561

ABSTRACT

Mycobacterium tuberculosis, responsible for Tuberculosis (TB), remains the leading cause of mortality among infectious diseases worldwide from a single infectious agent, with an estimated 1.7 million deaths in 2016. Biotin is an essential cofactor in M. tuberculosis that is required for lipid biosynthesis and gluconeogenesis. M. tuberculosis relies on de novo biotin biosynthesis to obtain this vital cofactor since it cannot scavenge sufficient biotin from a mammalian host. The biotin biosynthetic pathway in M. tuberculosis has been well studied and rigorously genetically validated providing a solid foundation for medicinal chemistry efforts. This review examines the mechanism and structure of the enzymes involved in biotin biosynthesis and ligation, summarizes the reported genetic validation studies of the pathway, and then analyzes the most promising inhibitors and natural products obtained from structure-based drug design and phenotypic screening.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Animals , Antitubercular Agents , Biosynthetic Pathways , Biotin , Humans
5.
ACS Infect Dis ; 5(4): 598-617, 2019 04 12.
Article in English | MEDLINE | ID: mdl-30652474

ABSTRACT

The synthesis, absolute stereochemical configuration, complete biological characterization, mechanism of action and resistance, and pharmacokinetic properties of ( S)-(-)-acidomycin are described. Acidomycin possesses promising antitubercular activity against a series of contemporary drug susceptible and drug-resistant M. tuberculosis strains (minimum inhibitory concentrations (MICs) = 0.096-6.2 µM) but is inactive against nontuberculosis mycobacteria and Gram-positive and Gram-negative pathogens (MICs > 1000 µM). Complementation studies with biotin biosynthetic pathway intermediates and subsequent biochemical studies confirmed acidomycin inhibits biotin synthesis with a Ki of approximately 1 µM through the competitive inhibition of biotin synthase (BioB) and also stimulates unproductive cleavage of S-adenosyl-l-methionine (SAM) to generate the toxic metabolite 5'-deoxyadenosine. Cell studies demonstrate acidomycin selectively accumulates in M. tuberculosis providing a mechanistic basis for the observed antibacterial activity. The development of spontaneous resistance by M. tuberculosis to acidomycin was difficult, and only low-level resistance to acidomycin was observed by overexpression of BioB. Collectively, the results provide a foundation to advance acidomycin and highlight BioB as a promising target.


Subject(s)
Antitubercular Agents/pharmacology , Bacterial Proteins/antagonists & inhibitors , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/enzymology , Sulfurtransferases/antagonists & inhibitors , Thiazolidines/pharmacology , Tuberculosis/microbiology , Animals , Antitubercular Agents/chemical synthesis , Antitubercular Agents/chemistry , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biological Products/chemical synthesis , Biological Products/chemistry , Biological Products/pharmacology , Biotin/biosynthesis , Caproates/chemical synthesis , Caproates/chemistry , Caproates/pharmacology , Drug Resistance, Bacterial , Humans , Kinetics , Mice , Microbial Sensitivity Tests , Mycobacterium tuberculosis/chemistry , Mycobacterium tuberculosis/genetics , Sulfurtransferases/chemistry , Sulfurtransferases/genetics , Sulfurtransferases/metabolism , Thiazolidines/chemical synthesis , Thiazolidines/chemistry , Tuberculosis/drug therapy
6.
ACS Infect Dis ; 4(7): 1102-1113, 2018 07 13.
Article in English | MEDLINE | ID: mdl-29663798

ABSTRACT

5'-[ N-(d-biotinoyl)sulfamoyl]amino-5'-deoxyadenosine (Bio-AMS, 1) possesses selective activity against Mycobacterium tuberculosis ( Mtb) and arrests fatty acid and lipid biosynthesis through inhibition of the Mycobacterium tuberculosis biotin protein ligase ( MtBPL). Mtb develops spontaneous resistance to 1 with a frequency of at least 1 × 10-7 by overexpression of Rv3406, a type II sulfatase that enzymatically inactivates 1. In an effort to circumvent this resistance mechanism, we describe herein strategic modification of the nucleoside at the 5'-position to prevent enzymatic inactivation. The new analogues retained subnanomolar potency to MtBPL ( KD = 0.66-0.97 nM), and 5' R- C-methyl derivative 6 exhibited identical antimycobacterial activity toward: Mtb H37Rv, MtBPL overexpression, and an isogenic Rv3406 overexpression strain (minimum inhibitory concentration, MIC = 1.56 µM). Moreover, 6 was not metabolized by recombinant Rv3406 and resistant mutants to 6 could not be isolated (frequency of resistance <1.4 × 10-10) demonstrating it successfully overcame Rv3406-mediated resistance.


Subject(s)
Antitubercular Agents/pharmacology , Carbon-Nitrogen Ligases/metabolism , Drug Resistance, Bacterial , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/enzymology , Nucleosides/metabolism , Antitubercular Agents/chemistry , Microbial Sensitivity Tests , Molecular Structure , Nucleosides/chemistry , Structure-Activity Relationship , Substrate Specificity
7.
Genome Announc ; 4(3)2016 May 26.
Article in English | MEDLINE | ID: mdl-27231352

ABSTRACT

Five bacteriophages that infect the Rhodobacter capsulatus strain YW1 were isolated from stream water near Bloomington, Illinois, USA. Two distinct genome types are represented in the newly isolated bacteriophages. These genomes are different from other bacteriophage genomes previously described.

8.
J Med Chem ; 58(18): 7349-7369, 2015 Sep 24.
Article in English | MEDLINE | ID: mdl-26299766

ABSTRACT

Mycobacterium tuberculosis (Mtb), responsible for both latent and symptomatic tuberculosis (TB), remains the second leading cause of mortality among infectious diseases worldwide. Mycobacterial biotin protein ligase (MtBPL) is an essential enzyme in Mtb and regulates lipid metabolism through the post-translational biotinylation of acyl coenzyme A carboxylases. We report the synthesis and evaluation of a systematic series of potent nucleoside-based inhibitors of MtBPL that contain modifications to the ribofuranosyl ring of the nucleoside. All compounds were characterized by isothermal titration calorimetry (ITC) and shown to bind potently with K(D)s ≤ 2 nM. Additionally, we obtained high-resolution cocrystal structures for a majority of the compounds. Despite fairly uniform biochemical potency, the whole-cell Mtb activity varied greatly with minimum inhibitory concentrations (MIC) ranging from 0.78 to >100 µM. Cellular accumulation studies showed a nearly 10-fold enhancement in accumulation of a C-2'-α analogue over the corresponding C-2'-ß analogue, consistent with their differential whole-cell activity.


Subject(s)
Antitubercular Agents/chemistry , Bacterial Proteins/antagonists & inhibitors , Carbon-Nitrogen Ligases/antagonists & inhibitors , Mycobacterium tuberculosis/enzymology , Nucleosides/chemistry , Antitubercular Agents/chemical synthesis , Antitubercular Agents/pharmacology , Bacterial Proteins/metabolism , Biotinylation , Carbon-Nitrogen Ligases/metabolism , Crystallography, X-Ray , Microbial Sensitivity Tests , Models, Molecular , Mycobacterium tuberculosis/drug effects , Nucleosides/chemical synthesis , Nucleosides/pharmacology , Protein Conformation , Stereoisomerism , Structure-Activity Relationship , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...