Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
iScience ; 4: 153-163, 2018 Jun 29.
Article in English | MEDLINE | ID: mdl-30240737

ABSTRACT

Second harmonic generation (SHG)-based probes are useful for nonlinear optical imaging of biological structures, such as the plasma membrane. Several amphiphilic porphyrin-based dyes with high SHG coefficients have been synthesized with different hydrophilic head groups, and their cellular targeting has been studied. The probes with cationic head groups localize better at the plasma membrane than the neutral probes with zwitterionic or non-charged ethylene glycol-based head groups. Porphyrin dyes with only dications as hydrophilic head groups localize inside HEK293T cells to give SHG, whereas tricationic dyes localize robustly at the plasma membrane of cells, including neurons, in vitro and ex vivo. The copper(II) complex of the tricationic dye with negligible fluorescence quantum yield works as an SHG-only dye. The free-base tricationic dye has been demonstrated for two-photon fluorescence and SHG-based multimodal imaging. This study demonstrates the importance of a balance between the hydrophobicity and hydrophilicity of amphiphilic dyes for effective plasma membrane localization.

2.
Chemistry ; 23(46): 11001-11010, 2017 Aug 16.
Article in English | MEDLINE | ID: mdl-28480989

ABSTRACT

Conjugated porphyrin dimers have emerged as versatile viscosity-sensitive fluorophores that are suitable for quantitative measurements of microscopic viscosity by ratiometric and fluorescence lifetime-based methods, in a concentration-independent manner. Here, we investigate the effect of extended conjugation in a porphyrin-dimer structure on their ability to sense viscosity and temperature. We show that the sensitivity of the fluorescence lifetime to temperature is a unique property of only a few porphyrin dimers.

3.
Org Biomol Chem ; 13(12): 3792-802, 2015 Mar 28.
Article in English | MEDLINE | ID: mdl-25703541

ABSTRACT

We report the synthesis of four new cationic dipolar push­pull dyes, together with an evaluation of their photophysical and photobiological characteristics pertinent to imaging membranes by fluorescence and second harmonic generation (SHG). All four dyes consist of an N,N-diethylaniline electron-donor conjugated to a pyridinium electron-acceptor via a thiophene bridge, with either vinylene (­CH=CH­) or ethynylene (­C≡C­) linking groups, and with either singly-charged or doubly-charged pyridinium terminals. The absorption and fluorescence behavior of these dyes were compared to a commercially available fluorescent membrane stain, the styryl dye FM4-64. The hyperpolarizabilities of all dyes were compared using hyper-Rayleigh scattering at 800 nm. Cellular uptake, localization, toxicity and phototoxicity were evaluated using tissue cell cultures (HeLa, SK-OV-3 and MDA-231). Replacing the central alkene bridge of FM4-64 with a thiophene does not substantially change the absorption, fluorescence or hyperpolarizability, whereas changing the vinylene-links to ethynylenes shifts the absorption and fluorescence to shorter wavelengths, and reduces the hyperpolarizability by about a factor of two. SHG and fluorescence imaging experiments in live cells showed that the doubly-charged thiophene dyes localize in plasma membranes, and exhibit lower internalization rates compared to FM4-64, resulting in less signal from the cell cytosol. At a typical imaging concentration of 1 µM, the doubly-charged dyes showed no significant light or dark toxicity, whereas the singly-charged dyes are phototoxic even at 0.5 µM. The doubly-charged dyes showed phototoxicity at concentrations greater than 10 µM, although they do not generate singlet oxygen, indicating that the phototoxicity is type I rather than type II. The doubly-charged thiophene dyes are more effective than FM4-64 as SHG dyes for live cells.


Subject(s)
Cell Membrane/chemistry , Coloring Agents/chemistry , Thiophenes/chemistry , Cell Line, Tumor , Cell Survival/drug effects , Humans , Models, Molecular , Nonlinear Dynamics , Optical Phenomena , Spectrometry, Fluorescence , Static Electricity , Unilamellar Liposomes/chemistry
5.
Biophys J ; 103(5): 907-17, 2012 Sep 05.
Article in English | MEDLINE | ID: mdl-23009840

ABSTRACT

Numerous dyes are available or under development for probing the structural and functional properties of biological membranes. Exogenous chromophores adopt a range of orientations when bound to membranes, which have a drastic effect on their biophysical behavior. Here, we present a method that employs optical anisotropy data from three polarization-imaging techniques to establish the distribution of orientations adopted by molecules in monolayers and bilayers. The resulting probability density functions, which contain the preferred molecular tilt µ and distribution breadth γ, are more informative than an average tilt angle [φ]. We describe a methodology for the extraction of anisotropy data through an image-processing technology that decreases the error in polarization measurements by about a factor of four. We use this technique to compare di-4-ANEPPS and di-8-ANEPPS, both dipolar dyes, using data from polarized 1-photon, 2-photon fluorescence and second-harmonic generation imaging. We find that di-8-ANEPPS has a lower tilt but the same distributional width. We find the distribution of tilts taken by di-4-ANEPPS in two phospholipid membrane models: giant unilamellar vesicles and water-in-oil droplet monolayers. Both models result in similar distribution functions with average tilts of 52° and 47°, respectively.


Subject(s)
Cell Membrane/metabolism , Coloring Agents/metabolism , Microscopy, Fluorescence, Multiphoton/methods , Pyridinium Compounds/metabolism , Image Processing, Computer-Assisted , Oils/chemistry , Unilamellar Liposomes/metabolism , Water/chemistry
6.
J Phys Chem A ; 115(33): 9111-9, 2011 Aug 25.
Article in English | MEDLINE | ID: mdl-21736352

ABSTRACT

We consider two types of ultrafast dynamical localization of photoexcited states in conformationally disordered poly(p-phenylenevinylene). First, we discuss nonadiabatic interconversion from higher energy extended exciton states to lower energy more localized local exciton ground states. Second, we calculate the dynamics of local exciton ground states on their Born-Oppenheimer potential energy surfaces. We show that within the first C-C bond oscillation following photoexcitation (∼35 fs) the exciton becomes self-trapped and localized over approximately eight monomers. This process is associated with a Calderia-Leggett type loss of phase coherence owing to the coupling of the polymer to a dissipative environment. Subsequent torsional relaxation (on a time scale of approximately picoseconds) has little effect on the localization. We conclude from this that the initial torsional disorder determines the spatial distribution and localization length of vertical excitations but that electron-phonon coupling is largely responsible for the localization length of self-trapped excitons. We next consider the effect of dynamical localization on fluorescence depolarization. We show that exciting higher energy states causes a larger fluorescence depolarization, because these states have a larger initial delocalization. Using the observation that fluorescence depolarization is a function of excitation wavelength and polymer conformation, we show how the models of exciton localization discussed here can be experimentally investigated.

SELECTION OF CITATIONS
SEARCH DETAIL
...