Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cancer Ther ; 8(11): 3151-61, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19887542

ABSTRACT

There is increasing evidence that tumor-associated macrophages promote the malignancy of some cancers. Colony-stimulating factor-1 (CSF-1) is expressed by many tumors and is a growth factor for macrophages and mediates osteoclast differentiation. Herein, we report the efficacy of a novel orally active CSF-1 receptor (CSF-1R) kinase inhibitor, JNJ-28312141, in proof of concept studies of solid tumor growth and tumor-induced bone erosion. H460 lung adenocarcinoma cells did not express CSF-1R and were not growth inhibited by JNJ-28312141 in vitro. Nevertheless, daily p.o. administration of JNJ-28312141 caused dose-dependent suppression of H460 tumor growth in nude mice that correlated with marked reductions in F4/80(+) tumor-associated macrophages and with increased plasma CSF-1, a possible biomarker of CSF-1R inhibition. Furthermore, the tumor microvasculature was reduced in JNJ-28312141-treated mice, consistent with a role for macrophages in tumor angiogenesis. In separate studies, JNJ-28312141 was compared with zoledronate in a model in which MRMT-1 mammary carcinoma cells inoculated into the tibias of rats led to severe cortical and trabecular bone lesions. Both agents reduced tumor growth and preserved bone. However, JNJ-28312141 reduced the number of tumor-associated osteoclasts superior to zoledronate. JNJ-28312141 exhibited additional activity against FMS-related receptor tyrosine kinase-3 (FLT3). To more fully define the therapeutic potential of this new agent, JNJ-28312141 was evaluated in a FLT3-dependent acute myeloid leukemia tumor xenograft model and caused tumor regression. In summary, this novel CSF-1R/FLT3 inhibitor represents a new agent with potential therapeutic activity in acute myeloid leukemia and in settings where CSF-1-dependent macrophages and osteoclasts contribute to tumor growth and skeletal events.


Subject(s)
Bone Neoplasms/drug therapy , Bone Neoplasms/secondary , Imidazoles/pharmacology , Leukemia, Myeloid, Acute/drug therapy , Piperidines/pharmacology , Protein Kinase Inhibitors/pharmacology , Receptor, Macrophage Colony-Stimulating Factor/antagonists & inhibitors , fms-Like Tyrosine Kinase 3/antagonists & inhibitors , Animals , Bone Neoplasms/enzymology , Bone Neoplasms/pathology , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/enzymology , Carcinoma, Non-Small-Cell Lung/pathology , Cell Growth Processes/drug effects , Cell Line, Tumor , Female , Humans , Immunohistochemistry , Leukemia, Myeloid, Acute/enzymology , Leukemia, Myeloid, Acute/pathology , Lung Neoplasms/drug therapy , Lung Neoplasms/enzymology , Lung Neoplasms/pathology , Mammary Neoplasms, Experimental/drug therapy , Mammary Neoplasms, Experimental/enzymology , Mammary Neoplasms, Experimental/pathology , Mice , Mice, Nude , Osteoclasts/drug effects , Osteoclasts/pathology , Rats , Rats, Sprague-Dawley , Receptor, Macrophage Colony-Stimulating Factor/blood , Receptor, Macrophage Colony-Stimulating Factor/metabolism , Substrate Specificity , Xenograft Model Antitumor Assays , fms-Like Tyrosine Kinase 3/metabolism
3.
Bioorg Med Chem Lett ; 18(6): 2097-102, 2008 Mar 15.
Article in English | MEDLINE | ID: mdl-18289848

ABSTRACT

A series of 3,4,6-substituted 2-quinolones has been synthesized and evaluated as inhibitors of the kinase domain of macrophage colony-stimulating factor-1 receptor (FMS). The fully optimized compound, 4-(4-ethyl-phenyl)-3-(2-methyl-3H-imidazol-4-yl)-2-quinolone-6-carbonitrile 21b, has an IC(50) of 2.5 nM in an in vitro assay and 5.0 nM in a bone marrow-derived macrophage cellular assay. Inhibition of FMS signaling in vivo was also demonstrated in a mouse pharmacodynamic model.


Subject(s)
Macrophages/drug effects , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacology , Quinolones/chemical synthesis , Quinolones/pharmacology , Receptor, Macrophage Colony-Stimulating Factor/antagonists & inhibitors , Administration, Oral , Animals , Biological Availability , Cell Proliferation/drug effects , Fluorescence Polarization , Genes, fos/genetics , Macrophage Colony-Stimulating Factor/metabolism , Mice , Mice, Inbred C57BL , Molecular Structure , Quinolones/pharmacokinetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats , Receptor, Macrophage Colony-Stimulating Factor/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Spleen/metabolism , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...