Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Pharm ; 461(1-2): 437-47, 2014 Jan 30.
Article in English | MEDLINE | ID: mdl-24370842

ABSTRACT

We queried whether cancer treatment by combinations of paclitaxel and butyrate - free or formulated in drug delivery systems - can improve therapeutic responses compared to each drug alone. Combination treatments were conducted with HT-29 and HeLa cells, as representatives of differentiation-induced and cell-death-induced cancer lines, respectively. Pre-treatment of the HT-29 cells with butyrate (at doses inducing differentiation), followed by butyrate+paclitaxel generated changes in cell cycle profile, increased the level of dead cells beyond that of each drug alone, and allowed reduction in paclitaxel doses. A similar combination treatment of HeLa cells was detrimental, indicating that whether the combination is beneficial or not is cancer-type specific. We hypothesize that while butyrate-treated HT-29 cells became sensitive to paclitaxel-induced Fas-mediated apoptosis, butyrate-adapted HeLa cells became apoptosis-resistant. We next tested the same drug combination on HT-29 cells, but each drug in a specific tumor-targeted carrier. The combination of drug carriers outperformed an equidose combination of the free drugs, showing potential to achieve high therapeutic responses (even in drug-resistant cells) at significantly lower and detergent-free paclitaxel doses, which should allow for reduction in adverse effects and risks of toxicity.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Butyric Acid/pharmacology , Drug Delivery Systems , Paclitaxel/pharmacology , Antineoplastic Agents, Phytogenic/administration & dosage , Apoptosis/drug effects , Butyric Acid/administration & dosage , Cell Cycle/drug effects , Cell Differentiation/drug effects , Dose-Response Relationship, Drug , Drug Carriers/chemistry , Drug Resistance, Neoplasm/drug effects , HT29 Cells , HeLa Cells , Humans , Paclitaxel/administration & dosage , Treatment Outcome
2.
Eur J Pharm Sci ; 41(1): 53-9, 2010 Sep 11.
Article in English | MEDLINE | ID: mdl-20553861

ABSTRACT

P-glycoprotein (Pgp) is a major ABC transporter responsible for multidrug-resistance (MDR) in cancer chemotherapy. Pre-clinical MDR modulation studies identified promising chemosensitizers, but none are in the clinic yet. Two novel progesterone-derived carbamates (11-carbamic acid N,N-dibenzyl progesterone ester and 11-carbamic acid N,N-dibutyl progesterone ester) were examined as potential chemosensitizers in the Pgp-expressing human colon cancer line HCT-15, applying the classical MDR-drugs paclitaxel and doxorubicin. The major findings were: (1) Pgp was expressed in the HCT-15 cells in both the cell and the nuclear membranes, (2) at the low dose range of 1-5 microM, each new candidate: (i) increased cytotoxicity of doxorubicin (15-fold) and (separately) of paclitaxel (40-fold), (ii) induced an increase in intracellular accumulation, 60% (4h) for doxorubicin and 300% (18h) for paclitaxel, (iii) reduced drug efflux from the cell, 2-fold and 4-fold for doxorubicin and for paclitaxel, respectively. Based on detailed kinetic analysis, using liposomes to model paclitaxel diffusion through cell membranes, efflux slowdown can be attributed to reduction in the rate constant of drug diffusion through Pgp, and not to Pgp blockage. Chemosensitization was consistently-better for paclitaxel (cytosol-operating) than for doxorubicin (nuclear-operating) implying linkage between P-glycoprotein localization and loci of drug action. Mapping intracellular locations of MDR-pumps may assist therapeutic strategies.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Antineoplastic Agents/pharmacology , Carbamates/pharmacology , Antineoplastic Agents/pharmacokinetics , Cell Line, Tumor , Drug Resistance, Multiple , Drug Resistance, Neoplasm , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...