Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 26(5): 4878-4889, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30569361

ABSTRACT

Ester-functionalized pyridinium ionic liquids (ILs), 1-decyloxycarbonylmethylpyridinium chloride (PyrСOOC10-Cl), and 1-dodecyloxycarbonylmethylpyridinium chloride (PyrСOOC12-Cl) have been synthesized and studied for their environmental toxicity. Simple long-chain pyridinium ILs, 1-dodecylpyridinium chloride (PyrC12-Cl), and commercial disinfectant cetylpyridinium chloride (CPC) were used as reference compounds. Both ester-functionalized ILs and CPC showed significantly reduced antibacterial activity compared to PyrC12-Cl. However, ester-functionalized ILs were found to have excellent antifungal activity towards Candida albicans fungus strains, similar to PyrC12-Cl and much higher than for CPC. The molecular docking of ILs in the active site of the known antifungal target N-myristoyltransferase (Nmt) C. albicans has been conducted. The obtained results indicate the possibility of ILs binding into the Nmt pocket. The high stability of the complexes, especially for PyrCOOC10-Cl, is ensured by hydrogen bonding, electrostatic anion-pi interactions, as well as hydrophobic pi-alkyl and alkyl interactions that was confirmed by calculated binding energy values. The acute toxicity studies of ester-functionalized ILs on D. rerio (zebrafish) hydrobiont have shown their dramatically reduced ecotoxicity compared to PyrC12-Cl and CPC. Thus, LD50 values of 15.2 mg/L and 16.8 mg/L were obtained for PyrCOOC10-Cl and PyrCOOC12-Cl, respectively, whereas CPC had LD50 value of 0.018 mg/L. The primary biodegradation test CEC L-33-A93 of ILs indicated an improved biodegradability of ester-functionalized compounds compared to simple long-chain ILs. Based on the obtained results, PyrCOOC10-Cl may be considered as very promising cationic biocide due to the combination of soft antimicrobial activity and reduced ecotoxicity, as well as improved biodegradability.


Subject(s)
Disinfectants/toxicity , Ionic Liquids/toxicity , Pyridinium Compounds/toxicity , Acyltransferases/metabolism , Animals , Biodegradation, Environmental , Candida albicans/drug effects , Candida albicans/enzymology , Cations , Disinfectants/chemistry , Ecotoxicology , Esters , Hydrophobic and Hydrophilic Interactions , Ionic Liquids/chemistry , Lethal Dose 50 , Molecular Docking Simulation , Pyridinium Compounds/chemistry , Zebrafish/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...