Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 11: 481, 2020.
Article in English | MEDLINE | ID: mdl-32300341

ABSTRACT

The thymus is the main organ of the lymphatic system, in which T cells undergo a rigorous selection to ensure that their receptors (TCRs) will be functional and will not react against the self. Genes encoding for TCR chains are fragmented and must be rearranged by a process of somatic recombination generating TCR rearrangement excision circles (TRECs). We recently documented coxsackievirus B4 (CV-B4) infection of Swiss albino mouse thymus in the course of in utero transmission. In the current study, we intended to evaluate thymic output in this experimental model. For this purpose, pregnant Swiss albino mice were inoculated with CV-B4 at day 10 or 17 of gestation, and thymus and spleen were sampled from offspring at different time points and then subjected to quantification of TREC molecules and Ptk7 gene expression. Results showed a pronounced effect of in utero CV-B4 infection on the thymus with an increase in the cellularity and, consequently, the weight of the organ. sj and DßTREC analysis, by real-time PCR, revealed a significant decrease following CV-B4 infection compared to controls, a decrease which gets worse as time goes by, both in the thymus and in the periphery. Those observations reflect a disturbance in the export of T cells to the periphery and their accumulation within the thymus. The evaluation of Ptk7 transcripts in the thymus, for its part, showed a decrease in expression, especially following an infection at day 10 of gestation, which supports the hypothesis of T cell accumulation in a mature stage in the thymus. The various effects observed correlate either negatively or positively with the viral load in the thymus and spleen. Disruption in thymic export may indeed interfere with T cell maturation. We speculate that this may lead to a premature release of T cells and the possibility of circulating autoreactive or proliferation-impaired T cell clones.


Subject(s)
Autoimmune Diseases/immunology , Coxsackievirus Infections/immunology , Enterovirus/physiology , Thymus Gland/physiology , Uterus/immunology , Animals , Autoimmunity , Cell Differentiation , Cell Proliferation , Coxsackievirus Infections/transmission , Down-Regulation , Enterovirus/pathogenicity , Female , Genes, T-Cell Receptor beta/genetics , Infectious Disease Transmission, Vertical , Male , Mice , Receptor Protein-Tyrosine Kinases/genetics , Receptor Protein-Tyrosine Kinases/metabolism , Thymus Gland/virology , Uterus/virology , Viral Load
2.
Front Immunol ; 9: 2175, 2018.
Article in English | MEDLINE | ID: mdl-30333823

ABSTRACT

The precise impact of the somatotrope axis upon the immune system is still highly debated. We have previously shown that mice with generalized ablation of growth hormone (GH) releasing hormone (GHRH) gene (Ghrh-/-) have normal thymus and T-cell development, but present a marked spleen atrophy and B-cell lymphopenia. Therefore, in this paper we have investigated vaccinal and anti-infectious responses of Ghrh-/- mice against S. pneumoniae, a pathogen carrying T-independent antigens. Ghrh-/- mice were unable to trigger production of specific IgM after vaccination with either native pneumococcal polysaccharides (PPS, PPV23) or protein-PPS conjugate (PCV13). GH supplementation of Ghrh-/- mice restored IgM response to PPV23 vaccine but not to PCV13 suggesting that GH could exert a specific impact on the spleen marginal zone that is strongly implicated in T-independent response against pneumococcal polysaccharides. As expected, after administration of low dose of S. pneumoniae, wild type (WT) completely cleared bacteria after 24 h. In marked contrast, Ghrh-/- mice exhibited a dramatic susceptibility to S. pneumoniae infection with a time-dependent increase in lung bacterial load and a lethal bacteraemia already after 24 h. Lungs of infected Ghrh-/- mice were massively infiltrated by inflammatory macrophages and neutrophils, while lung B cells were markedly decreased. The inflammatory transcripts signature was significantly elevated in Ghrh-/- mice. In this animal model, the somatotrope GHRH/GH/IGF1 axis plays a vital and unsuspected role in vaccine and immunological defense against S. pneumoniae.


Subject(s)
B-Lymphocytes/immunology , Growth Hormone-Releasing Hormone/immunology , Growth Hormone/deficiency , Pneumococcal Vaccines/immunology , Signal Transduction/immunology , Streptococcus pneumoniae/immunology , Animals , B-Lymphocytes/pathology , Growth Hormone/immunology , Growth Hormone-Releasing Hormone/genetics , Immunoglobulin M/genetics , Immunoglobulin M/immunology , Insulin-Like Growth Factor I/genetics , Insulin-Like Growth Factor I/immunology , Lung/immunology , Lung/pathology , Mice , Mice, Knockout , Signal Transduction/genetics
3.
Article in English | MEDLINE | ID: mdl-29928261

ABSTRACT

A debate is still open about the precise control exerted by the somatotrope GH-releasing hormone (GHRH)/growth hormone (GH)/insulin-like growth factor 1 axis on the immune system. The objective of this study was to directly address this question through the use of Ghrh-/- mice that exhibit a severe deficiency of their somatotrope axis. After control backcross studies and normalization for the reduced global weight of transgenic mice, no difference in weight and cellularity of the thymus was observed in Ghrh-/- mice when compared with C57BL/6 wild-type (WT) control mice. Similarly, no significant change was observed in frequency and number of thymic T cell subsets. In the periphery, Ghrh-/- mice exhibited an increase in T cell proportion associated with a higher frequency of sjTREC and naïve T cells. However, all Ghrh-/- mice displayed an absolute and relative splenic atrophy, in parallel with a decrease in B cell percentage. GH supplementation of transgenic mice for 6 weeks induced a significant increase in their global as well as absolute and relative splenic weight. Interestingly, the classical thymus involution following dexamethasone administration was shown to recover in WT mice more quickly than in mutant mice. Altogether, these data show that the severe somatotrope deficiency of Ghrh-/- mice essentially impacts the spleen and B compartment of the adaptive immune system, while it only marginally affects thymic function and T cell development.

4.
Front Horm Res ; 48: 147-159, 2017.
Article in English | MEDLINE | ID: mdl-28245459

ABSTRACT

Most scientific reports debate the thymotropic and immuno-stimulating properties of the somatotrope growth hormone-releasing hormone (GHRH)/growth hormone (GH)/insulin-like growth factor (IGF)-1 axis, but there is still some disagreement about the physiological role of this axis in basal conditions. Moreover, some authors have hypothesized that the physiological role of the somatotrope axis only appears in stressful conditions (such as sepsis or infective and inflammatory diseases). This chapter will provide an extended overview of the expression of the components (signals and receptors) of the somatotrope axis and their properties on cells of the innate and adaptive immune system. It will also summarize some clinical studies suggesting a benefit for a short-term GH treatment in acute immunodeficiencies, and the importance of GH supplementation in adult GH deficiency. A new transgenic mouse model, the hypothalamic GHRH-deficient (Ghrh-/-) mouse, which exhibits a severe deficiency of the somatotrope axis, will be presented since it will be of great help in further deciphering the regulation by the GHRH/GH/IGF-1 axis on both immune development and function. Finally, we will discuss the implication of aging-related somatopause in relation to the general context of Immunosenescence.


Subject(s)
Growth Hormone-Releasing Hormone/physiology , Growth Hormone/physiology , Immune System/physiology , Immunosenescence , Insulin-Like Growth Factor I/physiology , Animals , Humans
5.
Ann N Y Acad Sci ; 1351: 61-7, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26284958

ABSTRACT

Immunosenescence, characterized by complex modifications of immunity with age, could be related to frailty syndrome in elderly individuals, leading to an inadequate response to minimal aggression. Functional decline (i.e., the loss of ability to perform activities of daily living) is related to frailty and decreased physiological reserves and is a frequent outcome of hospitalization in older patients. Links between immunosenescence and frailty have been explored and 20 immunological parameters, including insulin-like growth factor-1 (IGF-1), thymopoeisis, and telomere length, were shown to be affected in elderly patients with functional decline. A strong relationship between IGF-1 and thymic ouput was evidenced. IGF-1, a mediator of growth hormone (GH), was subsequently shown to induce interleukin-7 secretion in cultured primary human thymic epithelial cells. We are exploring the stress hypothesis in which an acute stressor is used as the discriminator of frailty susceptibility. GH can counteract the deleterious immunosuppressive effects of stress-induced steroids. Under nonstress conditions, the immunosenescent system preserves physiological responses, while under stress conditions, the combination of immunosenescence and a defect in the somatotrope axis might lead to functional decline.


Subject(s)
Frail Elderly , Growth Hormone-Releasing Hormone/metabolism , Growth Hormone/metabolism , Immunosenescence/physiology , Insulin-Like Growth Factor I/metabolism , Activities of Daily Living , Aged, 80 and over , Biomarkers , Cells, Cultured , Growth Hormone/genetics , Hematopoiesis/immunology , Hematopoiesis/physiology , Humans , Immunosenescence/immunology , Interleukin-7/metabolism , Stress, Physiological/physiology , Telomere Homeostasis/physiology
6.
Front Neurosci ; 7: 187, 2013 Oct 16.
Article in English | MEDLINE | ID: mdl-24137108

ABSTRACT

For centuries after its first description by Galen, the thymus was considered as only a vestigial endocrine organ until the discovery in 1961 by Jacques FAP Miller of its essential role in the development of T (thymo-dependent) lymphocytes. A unique thymus first appeared in cartilaginous fishes some 500 million years ago, at the same time or shortly after the emergence of the adaptive (acquired) immune system. The thymus may be compared to a small brain or a computer highly specialized in the orchestration of central immunological self-tolerance. This was a necessity for the survival of species, given the potent evolutionary pressure imposed by the high risk of autotoxicity inherent in the stochastic generation of the diversity of immune cell receptors that characterize the adaptive immune response. A new paradigm of "neuroendocrine self-peptides" has been proposed, together with the definition of "neuroendocrine self." Neuroendocrine self-peptides are secreted by thymic epithelial cells (TECs) not according to the classic model of neuroendocrine signaling, but are processed for presentation by, or in association with, the thymic major histocompatibility complex (MHC) proteins. The autoimmune regulator (AIRE) gene/protein controls the transcription of neuroendocrine genes in TECs. The presentation of self-peptides in the thymus is responsible for the clonal deletion of self-reactive T cells, which emerge during the random recombination of gene segments that encode variable parts of the T cell receptor for the antigen (TCR). At the same time, self-antigen presentation in the thymus generates regulatory T (Treg) cells that can inhibit, in the periphery, those self-reactive T cells that escaped negative selection in the thymus. Several arguments indicate that the origin of autoimmunity directed against neuroendocrine glands results primarily from a defect in the intrathymic programming of self-tolerance to neuroendocrine functions. This defect may be genetic or acquired, for example during an enteroviral infection. This novel knowledge of normal and pathologic functions of the thymus constitutes a solid basis for the development of a novel type of tolerogenic/negative self-vaccination against type 1 diabetes (T1D).

7.
Neuroimmunomodulation ; 18(5): 314-9, 2011.
Article in English | MEDLINE | ID: mdl-21952683

ABSTRACT

Before being able to react against infectious non-self-antigens, the immune system has to be educated in recognition and tolerance of neuroendocrine self-proteins. This sophisticated educational process takes place only in the thymus. The development of an autoimmune response directed to neuroendocrine glands has been shown to result from a thymus dysfunction in programming immunological self-tolerance to neuroendocrine-related antigens. This thymus dysfunction leads to a breakdown of immune homeostasis with an enrichment of 'forbidden' self-reactive T cells and a deficiency in self-antigen-specific natural regulatory T cells in the peripheral T lymphocyte repertoire. A large number of neuroendocrine self-antigens are expressed by the thymic epithelium, under the control of the autoimmune regulator (AIRE) gene/protein in the medulla. Based on the close homology and cross-tolerance between thymic type 1 diabetes-related self-antigens and peripheral antigens targeted in ß-cells by autoimmunity, a novel type of vaccination is currently developed for the prevention and cure of type 1 diabetes. If this approach were found to be effective in reprogramming immunological tolerance that is absent or broken in this disease, it could pave the way for the design of negative/tolerogenic self-vaccines against other endocrine and organ-specific autoimmune disorders.


Subject(s)
Adaptive Immunity , Autoimmune Diseases/immunology , Biological Evolution , Neurosecretory Systems/physiology , Thymus Gland/physiology , Animals , Autoimmune Diseases/prevention & control , Autoimmunity/immunology , Diabetes Mellitus, Type 1/immunology , Diabetes Mellitus, Type 1/prevention & control , Humans , Self Tolerance/immunology , Self Tolerance/physiology , Thymus Gland/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...