Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nucleic Acids Res ; 50(D1): D165-D173, 2022 01 07.
Article in English | MEDLINE | ID: mdl-34850907

ABSTRACT

JASPAR (http://jaspar.genereg.net/) is an open-access database containing manually curated, non-redundant transcription factor (TF) binding profiles for TFs across six taxonomic groups. In this 9th release, we expanded the CORE collection with 341 new profiles (148 for plants, 101 for vertebrates, 85 for urochordates, and 7 for insects), which corresponds to a 19% expansion over the previous release. We added 298 new profiles to the Unvalidated collection when no orthogonal evidence was found in the literature. All the profiles were clustered to provide familial binding profiles for each taxonomic group. Moreover, we revised the structural classification of DNA binding domains to consider plant-specific TFs. This release introduces word clouds to represent the scientific knowledge associated with each TF. We updated the genome tracks of TFBSs predicted with JASPAR profiles in eight organisms; the human and mouse TFBS predictions can be visualized as native tracks in the UCSC Genome Browser. Finally, we provide a new tool to perform JASPAR TFBS enrichment analysis in user-provided genomic regions. All the data is accessible through the JASPAR website, its associated RESTful API, the R/Bioconductor data package, and a new Python package, pyJASPAR, that facilitates serverless access to the data.


Subject(s)
Databases, Genetic , Genomics/classification , Software , Transcription Factors/genetics , Animals , Binding Sites/genetics , Computational Biology , Genome/genetics , Humans , Mice , Plants/genetics , Protein Binding/genetics , Transcription Factors/classification , Vertebrates/genetics
2.
BMC Genomics ; 22(1): 482, 2021 Jun 26.
Article in English | MEDLINE | ID: mdl-34174819

ABSTRACT

BACKGROUND: Transcription factors (TFs) bind specifically to TF binding sites (TFBSs) at cis-regulatory regions to control transcription. It is critical to locate these TF-DNA interactions to understand transcriptional regulation. Efforts to predict bona fide TFBSs benefit from the availability of experimental data mapping DNA binding regions of TFs (chromatin immunoprecipitation followed by sequencing - ChIP-seq). RESULTS: In this study, we processed ~ 10,000 public ChIP-seq datasets from nine species to provide high-quality TFBS predictions. After quality control, it culminated with the prediction of ~ 56 million TFBSs with experimental and computational support for direct TF-DNA interactions for 644 TFs in > 1000 cell lines and tissues. These TFBSs were used to predict > 197,000 cis-regulatory modules representing clusters of binding events in the corresponding genomes. The high-quality of the TFBSs was reinforced by their evolutionary conservation, enrichment at active cis-regulatory regions, and capacity to predict combinatorial binding of TFs. Further, we confirmed that the cell type and tissue specificity of enhancer activity was correlated with the number of TFs with binding sites predicted in these regions. All the data is provided to the community through the UniBind database that can be accessed through its web-interface ( https://unibind.uio.no/ ), a dedicated RESTful API, and as genomic tracks. Finally, we provide an enrichment tool, available as a web-service and an R package, for users to find TFs with enriched TFBSs in a set of provided genomic regions. CONCLUSIONS: UniBind is the first resource of its kind, providing the largest collection of high-confidence direct TF-DNA interactions in nine species.


Subject(s)
Chromatin Immunoprecipitation Sequencing , DNA , Binding Sites , Chromatin Immunoprecipitation , Computational Biology , DNA/metabolism , Protein Binding
3.
Bioinformatics ; 37(11): 1607-1609, 2021 07 12.
Article in English | MEDLINE | ID: mdl-33135764

ABSTRACT

MOTIVATION: Accurate motif enrichment analyses depend on the choice of background DNA sequences used, which should ideally match the sequence composition of the foreground sequences. It is important to avoid false positive enrichment due to sequence biases in the genome, such as GC-bias. Therefore, relying on an appropriate set of background sequences is crucial for enrichment analysis. RESULTS: We developed BiasAway, a command line tool and its dedicated easy-to-use web server to generate synthetic sequences matching any k-mer nucleotide composition or select genomic DNA sequences matching the mononucleotide composition of the foreground sequences through four different models. For genomic sequences, we provide precomputed partitions of genomes from nine species with five different bin sizes to generate appropriate genomic background sequences. AVAILABILITY AND IMPLEMENTATION: BiasAway source code is freely available from Bitbucket (https://bitbucket.org/CBGR/biasaway) and can be easily installed using bioconda or pip. The web server is available at https://biasaway.uio.no and a detailed documentation is available at https://biasaway.readthedocs.io. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Genomics , Software , DNA/genetics , Genome , Nucleotides
4.
Proteomics ; 15(22): 3765-71, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26316313

ABSTRACT

Cancer is a class of diseases characterized by abnormal cell growth and one of the major reasons for human deaths. Proteins are involved in the molecular mechanisms leading to cancer, furthermore they are affected by anti-cancer drugs, and protein biomarkers can be used to diagnose certain cancer types. Therefore, it is important to explore the proteomics background of cancer. In this report, we developed the Cancer Proteomics database to re-interrogate published proteome studies investigating cancer. The database is divided in three sections related to cancer processes, cancer types, and anti-cancer drugs. Currently, the Cancer Proteomics database contains 9778 entries of 4118 proteins extracted from 143 scientific articles covering all three sections: cell death (cancer process), prostate cancer (cancer type) and platinum-based anti-cancer drugs including carboplatin, cisplatin, and oxaliplatin (anti-cancer drugs). The detailed information extracted from the literature includes basic information about the articles (e.g., PubMed ID, authors, journal name, publication year), information about the samples (type, study/reference, prognosis factor), and the proteomics workflow (Subcellular fractionation, protein, and peptide separation, mass spectrometry, quantification). Useful annotations such as hyperlinks to UniProt and PubMed were included. In addition, many filtering options were established as well as export functions. The database is freely available at http://cancerproteomics.uio.no.


Subject(s)
Databases, Protein , Neoplasm Proteins , Neoplasms/metabolism , Proteome , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cell Death , Humans , Male , Neoplasms/drug therapy , Neoplasms/pathology , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Proteomics
5.
BMC Bioinformatics ; 12: 388, 2011 Oct 05.
Article in English | MEDLINE | ID: mdl-21975162

ABSTRACT

BACKGROUND: The iRefIndex consolidates protein interaction data from ten databases in a rigorous manner using sequence-based hash keys. Working with consolidated interaction data comes with distinct challenges: data are redundant, overlapping, highly interconnected and may be collected and represented using different curation practices. These phenomena were quantified in our previous studies. RESULTS: The iRefScape plug-in for the Cytoscape graphical viewer addresses these challenges. We show how these factors impact on data-mining tasks and how our solutions resolve them in a simple and efficient manner. A uniform accession space is used to limit redundancy and support search expansion and searching on multiple accession types. Multiple node and edge features support data filtering and mining. Node colours and features supply information about search result provenance. Overlapping evidence is presented using a multi-graph and a bi-partite representation is used to distinguish binary and n-ary source data. Searching for interactions between sets of proteins is supported and specifically includes searches on disease-related genes found in OMIM. Finally, a synchronized adjacency-matrix view facilitates visualization of relationships between sets of user defined groups. CONCLUSIONS: The iRefScape plug-in will be of interest to advanced users of interaction data. The plug-in provides access to a consolidated data set in a uniform accession space while remaining faithful to the underlying source data. Tools are provided to facilitate a range of tasks from a simple search to knowledge discovery. The plug-in uses a number of strategies that will be of interest to other plug-in developers.


Subject(s)
Data Mining , Databases, Protein , Proteins/metabolism , Database Management Systems , Databases, Genetic , Protein Interaction Mapping , Software
SELECTION OF CITATIONS
SEARCH DETAIL
...