Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
J Agric Food Chem ; 72(11): 5898-5911, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38459945

ABSTRACT

In view of potential future changes of German food legislation with regard to cheese product quality parameters, this study aimed to evaluate the quality of whey protein-enriched semihard cheese (WPEC). Model WPEC was produced in a pilot plant and on an industrial scale by adding defined amounts of high-heat (HH) milk to the cheese milk and comprehensively analyzed during cheese processing. The dry matter, total protein, pure protein, fat, and sodium chloride content of six-week ripened cheese samples were not significantly different (p < 0.05) when the technologically necessary heating of the curd was adapted to the amount of HH milk. However, the ripening, firmness, and melting behavior of WPEC was different compared to cheese without HH milk. During ripening, no formation of whey protein peptides was observed, but differences in the amount of some bitter peptides deriving from the casein fraction were found. Sensory data suggested a slightly more bitter taste perception by the panelists for the WPEC. Further technological adjustments are recommended to obtain marketable WPEC.


Subject(s)
Cheese , Animals , Cheese/analysis , Whey Proteins/chemistry , Milk/chemistry , Taste , Peptides/analysis , Food Handling , Whey
2.
Foods ; 12(10)2023 May 15.
Article in English | MEDLINE | ID: mdl-37238821

ABSTRACT

Several technologies are available for incorporating whey proteins into a cheese matrix. However, there is no valid analytical method available to determine the whey protein content in matured cheese, to date. Consequently, the aim of the present study was to develop a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the quantification of individual whey proteins based on specific marker peptides ('bottom-up' proteomic approach). Therefore, the whey protein-enriched model of the Edam-type cheese was produced in a pilot plant and on an industrial scale. Tryptic hydrolysis experiments were performed to evaluate the suitability of identified potential marker peptides (PMPs) for α-lactalbumin (α-LA) and ß-lactoglobulin (ß-LG). Based on the findings, α-LA and ß-LG appeared to be resistant to proteolytic degradation during six weeks of ripening and no influence on the PMP was observed. Good levels of linearity (R2 > 0.9714), repeatability (CVs < 5%), and recovery rate (80% to 120%) were determined for most PMPs. However, absolute quantification with external peptide and protein standards revealed differences in model cheese depending on the PMP, e.g., 0.50% ± 0.02% to 5.31% ± 0.25% for ß-LG. As protein spiking prior to hydrolysis revealed differing digestion behavior of whey proteins, further studies are required to enable valid quantification in various cheese types.

SELECTION OF CITATIONS
SEARCH DETAIL
...