Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nano Lett ; 15(7): 4745-51, 2015 Jul 08.
Article in English | MEDLINE | ID: mdl-26083322

ABSTRACT

We developed a nanocomposite with highly aligned graphite platelets in a copper matrix. Spark plasma sintering ensured an excellent copper-graphite interface for transmitting heat and stress. The resulting composite has superior thermal conductivity (500 W m(-1) K(-1), 140% of copper), which is in excellent agreement with modeling based on the effective medium approximation. The thermal expansion perpendicular to the graphite platelets drops dramatically from ∼20 ppm K(-1) for graphite and copper separately to 2 ppm K(-1) for the combined structure. We show that this originates from the layered, highly anisotropic structure of graphite combined with residual stress under ambient conditions, that is, strain-engineering of the thermal expansion. Combining excellent thermal conductivity with ultralow thermal expansion results in ideal materials for heat sinks and other devices for thermal management.

2.
Nano Lett ; 14(6): 3640-4, 2014 Jun 11.
Article in English | MEDLINE | ID: mdl-24839860

ABSTRACT

A controlled alignment of graphite nanoplatelets in a composite matrix will allow developing materials with tailored thermal properties. Achieving a high degree of alignment in a reproducible way, however, remains challenging. Here we demonstrate the alignment of graphite nanoplatelets in copper composites produced via high-energy ball milling and spark plasma sintering. The orientation of the nanoplatelets in the copper matrix is verified by polarized Raman scattering and electron microscopy showing an increasing order with increasing platelet size. The thermal conductivity k along the alignment direction is up to five times higher than perpendicular to it. The composite with the highest degree of alignment has a thermal diffusivity (100 mm(2) s(-1)) comparable to copper (105 mm(2) s(-1)) but is 20% lighter. By modeling the thermal properties of the composites within the effective medium approximation we show that (i) the Kapitza resistance is not a limiting factor for improving the thermal conductivity of a copper-graphite system and (ii) copper-graphite-nanoplatelet composites may be expected to achieve a higher thermal conductivity than copper upon further refinement.

SELECTION OF CITATIONS
SEARCH DETAIL
...