Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 8313, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38097633

ABSTRACT

Controlling site-selectivity and reactivity in chemical reactions continues to be a key challenge in modern synthetic chemistry. Here, we demonstrate the discovery of site-selective chemical reactions on the water surface via a sequential assembly approach. A negatively charged surfactant monolayer on the water surface guides the electrostatically driven, epitaxial, and aligned assembly of reagent amino-substituted porphyrin molecules, resulting in a well-defined J-aggregated structure. This constrained geometry of the porphyrin molecules prompts the subsequent directional alignment of the perylenetetracarboxylic dianhydride reagent, enabling the selective formation of a one-sided imide bond between porphyrin and reagent. Surface-specific in-situ spectroscopies reveal the underlying mechanism of the dynamic interface that promotes multilayer growth of the site-selective imide product. The site-selective reaction on the water surface is further demonstrated by three reversible and irreversible chemical reactions, such as imide-, imine-, and 1, 3-diazole (imidazole)- bonds involving porphyrin molecules. This unique sequential assembly approach enables site-selective chemical reactions that can bring on-water surface synthesis to the forefront of modern organic chemistry.

2.
Chemistry ; 28(20): e202104502, 2022 Apr 06.
Article in English | MEDLINE | ID: mdl-35157327

ABSTRACT

The interest in two-dimensional conjugated polymers (2D CPs) has increased significantly in recent years. In particular, vinylene-linked 2D CPs with fully in-plane sp2 -carbon-conjugated structures, high thermal and chemical stability, have become the focus of attention. Although the Horner-Wadsworth-Emmons (HWE) reaction has been recently demonstrated in synthesizing vinylene-linked 2D CPs, it remains largely unexplored due to the challenge in synthesis. In this work, we reveal the control of crystallinity of 2D CPs during the solvothermal synthesis of 2D-poly(phenylene-quinoxaline-vinylene)s (2D-PPQVs) and 2D-poly(phenylene-vinylene)s through the HWE polycondensation. The employment of fluorinated phosphonates and rigid aldehyde building blocks is demonstrated as crucial factors in enhancing the crystallinity of the obtained 2D CPs. Density functional theory (DFT) calculations reveal the critical role of the fluorinated phosphonate in enhancing the reversibility of the (semi)reversible C-C single bond formation.

3.
J Phys Chem Lett ; 11(9): 3495-3500, 2020 May 07.
Article in English | MEDLINE | ID: mdl-32282209

ABSTRACT

Hydrogen bonds are of great scientific interest, determining the free energy landscape and hence chemical and physical properties of many materials systems, for example, the hybrid organic-inorganic perovskites. Although these interactions are critical, understanding them is difficult in complex, multicomponent systems; hydrogen halides are ideal as simple binary model compounds for understanding the role of hydrogen bonding in physical properties like phase transitions. Here we investigate the orthorhombic low-temperature phase and the cubic high-temperature phase in HX (X = F, Cl, Br, or I) systems to understand how different hydrogen-halide bonds influence free energy profiles. We show that hydrogen fluoride has a qualitatively different behavior due to strong hydrogen bonding and hence a very different vibrational entropy. Heavier halides are in contrast rather similar in their physical properties; however, dispersion interactions play a more crucial role in these. These results have implications for the rational design of materials with hydrogen-halide bonds and tuning material properties in systems like mixed anion CH3NH3PbX3 perovskites.

4.
Nat Commun ; 10(1): 4921, 2019 10 29.
Article in English | MEDLINE | ID: mdl-31664026

ABSTRACT

The post-synthetic installation of linker molecules between open-metal sites (OMSs) and undercoordinated metal-nodes in a metal-organic framework (MOF) - retrofitting - has recently been discovered as a powerful tool to manipulate macroscopic properties such as the mechanical robustness and the thermal expansion behavior. So far, the choice of cross linkers (CLs) that are used in retrofitting experiments is based on qualitative considerations. Here, we present a low-cost computational framework that provides experimentalists with a tool for evaluating various CLs for retrofitting a given MOF system with OMSs. After applying our approach to the prototypical system CL@Cu3BTC2 (BTC = 1,3,5-benzentricarboxylate) the methodology was expanded to NOTT-100 and NOTT-101 MOFs, identifying several promising CLs for future CL@NOTT-100 and CL@NOTT-101 retrofitting experiments. The developed model is easily adaptable to other MOFs with OMSs and is set-up to be used by experimentalists, providing a guideline for the synthesis of new retrofitted MOFs with modified physicochemical properties.

5.
J Am Chem Soc ; 141(26): 10504-10509, 2019 Jul 03.
Article in English | MEDLINE | ID: mdl-31184478

ABSTRACT

The modular building principle of metal-organic frameworks (MOFs) presents an excellent platform to explore and establish structure-property relations that tie microscopic to macroscopic properties. Negative thermal expansion (NTE) is a common phenomenon in MOFs and is often ascribed to collective motions that can move through the structure at sufficiently low energies. Here, we show that the introduction of additional linkages in a parent framework, retrofitting, is an effective approach to access lattice dynamics experimentally, in turn providing researchers with a tool to alter the NTE behavior in MOFs. By introducing TCNQ (7,7,8,8-tetracyanoquinodimethane) into the prototypical MOF Cu3BTC2 (BTC = 1,3,5-benzenetricarboxylate; HKUST-1), NTE can be tuned between αV = -15.3 × 10-6 K-1 (Cu3BTC2) and αV = -8.4 × 10-6 K-1 (1.0TCNQ@Cu3BTC2). We ascribe this phenomenon to a general stiffening of the framework as a function of TCNQ loading due to additional network connectivity, which is confirmed by computational modeling and far-infrared spectroscopy. Our findings imply that retrofitting is generally applicable to MOFs with open metal sites, opening yet another way to fine-tune properties in this versatile class of materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...