Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 16(10): e0258737, 2021.
Article in English | MEDLINE | ID: mdl-34673804

ABSTRACT

The most basic level of eukaryotic gene regulation is the presence or absence of nucleosomes on DNA regulatory elements. In an effort to elucidate in vivo nucleosome patterns, in vitro studies are frequently used. In vitro, short DNA fragments are more favorable for nucleosome formation, increasing the likelihood of nucleosome occupancy. This may in part result from the fact that nucleosomes prefer to form on the terminal ends of linear DNA. This phenomenon has the potential to bias in vitro reconstituted nucleosomes and skew results. If the ends of DNA fragments are known, the reads falling close to the ends are typically discarded. In this study we confirm the phenomenon of end bias of in vitro nucleosomes. We describe a method in which nearly identical libraries, with different known ends, are used to recover nucleosomes which form towards the terminal ends of fragmented DNA. Finally, we illustrate that although nucleosomes prefer to form on DNA ends, it does not appear to skew results or the interpretation thereof.


Subject(s)
Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans/genetics , DNA/analysis , Genome , Nucleosomes/genetics , Transcription, Genetic , Animals , Caenorhabditis elegans/growth & development , DNA/genetics , In Vitro Techniques
2.
BMC Bioinformatics ; 17 Suppl 7: 268, 2016 Jul 25.
Article in English | MEDLINE | ID: mdl-27453991

ABSTRACT

BACKGROUND: Genome-wide association studies (GWAS) have effectively identified genetic factors for many diseases. Many diseases, including Alzheimer's disease (AD), have epistatic causes, requiring more sophisticated analyses to identify groups of variants which together affect phenotype. RESULTS: Based on the GWAS statistical model, we developed a multi-SNP GWAS analysis to identify pairs of variants whose common occurrence signaled the Alzheimer's disease phenotype. CONCLUSIONS: Despite not having sufficient data to demonstrate significance, our preliminary experimentation identified a high correlation between GRIA3 and HLA-DRB5 (an AD gene). GRIA3 has not been previously reported in association with AD, but is known to play a role in learning and memory.


Subject(s)
Alzheimer Disease/genetics , Computational Biology/methods , Epistasis, Genetic , Genome-Wide Association Study/methods , Polymorphism, Single Nucleotide , Alzheimer Disease/metabolism , Female , Genetic Predisposition to Disease , HLA-DRB5 Chains/genetics , Humans , Male , Models, Statistical , Receptors, AMPA/genetics
3.
Bioinformatics ; 32(1): 17-24, 2016 Jan 01.
Article in English | MEDLINE | ID: mdl-26382194

ABSTRACT

MOTIVATION: The contig orientation problem, which we formally define as the MAX-DIR problem, has at times been addressed cursorily and at times using various heuristics. In setting forth a linear-time reduction from the MAX-CUT problem to the MAX-DIR problem, we prove the latter is NP-complete. We compare the relative performance of a novel greedy approach with several other heuristic solutions. RESULTS: Our results suggest that our greedy heuristic algorithm not only works well but also outperforms the other algorithms due to the nature of scaffold graphs. Our results also demonstrate a novel method for identifying inverted repeats and inversion variants, both of which contradict the basic single-orientation assumption. Such inversions have previously been noted as being difficult to detect and are directly involved in the genetic mechanisms of several diseases. AVAILABILITY AND IMPLEMENTATION: http://bioresearch.byu.edu/scaffoldscaffolder. CONTACT: paulmbodily@gmail.com SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Algorithms , Contig Mapping/methods
4.
BMC Bioinformatics ; 16 Suppl 7: S5, 2015.
Article in English | MEDLINE | ID: mdl-25952609

ABSTRACT

BACKGROUND: Genome assemblers to date have predominantly targeted haploid reference reconstruction from homozygous data. When applied to diploid genome assembly, these assemblers perform poorly, owing to the violation of assumptions during both the contigging and scaffolding phases. Effective tools to overcome these problems are in growing demand. Increasing parameter stringency during contigging is an effective solution to obtaining haplotype-specific contigs; however, effective algorithms for scaffolding such contigs are lacking. METHODS: We present a stand-alone scaffolding algorithm, ScaffoldScaffolder, designed specifically for scaffolding diploid genomes. The algorithm identifies homologous sequences as found in "bubble" structures in scaffold graphs. Machine learning classification is used to then classify sequences in partial bubbles as homologous or non-homologous sequences prior to reconstructing haplotype-specific scaffolds. We define four new metrics for assessing diploid scaffolding accuracy: contig sequencing depth, contig homogeneity, phase group homogeneity, and heterogeneity between phase groups. RESULTS: We demonstrate the viability of using bubbles to identify heterozygous homologous contigs, which we term homolotigs. We show that machine learning classification trained on these homolotig pairs can be used effectively for identifying homologous sequences elsewhere in the data with high precision (assuming error-free reads). CONCLUSION: More work is required to comparatively analyze this approach on real data with various parameters and classifiers against other diploid genome assembly methods. However, the initial results of ScaffoldScaffolder supply validity to the idea of employing machine learning in the difficult task of diploid genome assembly. Software is available at http://bioresearch.byu.edu/scaffoldscaffolder.


Subject(s)
Contig Mapping/methods , Diploidy , Genome, Human , Heterozygote , Sequence Analysis, DNA/methods , Sequence Homology , Software , Algorithms , Artificial Intelligence , High-Throughput Nucleotide Sequencing , Humans
5.
BMC Bioinformatics ; 15 Suppl 7: S3, 2014.
Article in English | MEDLINE | ID: mdl-25077414

ABSTRACT

BACKGROUND: Error correction is an important step in increasing the quality of next-generation sequencing data for downstream analysis and use. Polymorphic datasets are a challenge for many bioinformatic software packages that are designed for or assume homozygosity of an input dataset. This assumption ignores the true genomic composition of many organisms that are diploid or polyploid. In this survey, two different error correction packages, Quake and ECHO, are examined to see how they perform on next-generation sequence data from heterozygous genomes. RESULTS: Quake and ECHO perform well and were able to correct many errors found within the data. However, errors that occur at heterozygous positions had unique trends. Errors at these positions were sometimes corrected incorrectly, introducing errors into the dataset with the possibility of creating a chimeric read. Quake was much less likely to create chimeric reads. Quake's read trimming removed a large portion of the original data and often left reads with few heterozygous markers. ECHO resulted in more chimeric reads and introduced more errors than Quake but preserved heterozygous markers. CONCLUSIONS: These findings suggest that Quake and ECHO both have strengths and weaknesses when applied to heterozygous data. With the increased interest in haplotype specific analysis, new tools that are designed to be haplotype-aware are necessary that do not have the weaknesses of Quake and ECHO.


Subject(s)
Genomics/methods , Heterozygote , High-Throughput Nucleotide Sequencing/methods , Sequence Analysis, DNA/methods , Software , Diploidy , Genome , Haplotypes , Humans
6.
PLoS One ; 9(1): e87045, 2014.
Article in English | MEDLINE | ID: mdl-24475219

ABSTRACT

Pyrenophora semeniperda (anamorph Drechslera campulata) is a necrotrophic fungal seed pathogen that has a wide host range within the Poaceae. One of its hosts is cheatgrass (Bromus tectorum), a species exotic to the United States that has invaded natural ecosystems of the Intermountain West. As a natural pathogen of cheatgrass, P. semeniperda has potential as a biocontrol agent due to its effectiveness at killing seeds within the seed bank; however, few genetic resources exist for the fungus. Here, the genome of P. semeniperda isolate assembled from sequence reads of 454 pyrosequencing is presented. The total assembly is 32.5 Mb and includes 11,453 gene models encoding putative proteins larger than 24 amino acids. The models represent a variety of putative genes that are involved in pathogenic pathways typically found in necrotrophic fungi. In addition, extensive rearrangements, including inter- and intrachromosomal rearrangements, were found when the P. semeniperda genome was compared to P. tritici-repentis, a related fungal species.


Subject(s)
Ascomycota/genetics , Bromus/microbiology , Genome Components/genetics , Genome, Fungal/genetics , Base Sequence , DNA, Complementary/genetics , Idaho , Molecular Sequence Data , Oligonucleotides/genetics , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...