Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 16(6): 7543-7553, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38297812

ABSTRACT

The rising prevalence of diabetes has led to an increased focus on real-time glucose monitoring. Wearable glucose sensor patches allow noninvasive, real-time monitoring, reducing patient discomfort compared to invasive sensors. However, most existing glucose sensor patches rely on complex and contaminating metal vapor deposition technologies, which pose limitations in practical production. In this study, we propose a novel approach for preparing graphite/multiwall carbon nanotubes (MWCNT)/reduced graphene oxide (rGO) using a high-viscosity ink, which can be easily obtained through simple mechanical stirring. To create intricate patterns and enable printing on curved substrates, we employed a 3D printer equipped with an infrared laser ranging system. The ink served as a working electrode, and we developed a three-electrode system patch with a concentric circle structure. Subsequently, the working electrode underwent enzymatic modification with glucose dehydrogenase with flavin adenine dinucleotide (GDH-FAD) using a polymer embedding method. The resulting wearable glucose sensor exhibited a sensitivity of 2.42 µA mM-1 and a linear detection range of 1-12 mM. In addition, the glucose sensor has excellent anti-interference capability and demonstrates good repeatability in simulated real human wear scenarios, which meets the requirements for accurate human detection. These findings provide valuable insights into the development of human health monitoring technologies.


Subject(s)
Graphite , Nanotubes, Carbon , Humans , Blood Glucose , Nanotubes, Carbon/chemistry , Blood Glucose Self-Monitoring , Graphite/chemistry , Electrodes , Glucose 1-Dehydrogenase , Glucose
2.
Foods ; 12(22)2023 Nov 10.
Article in English | MEDLINE | ID: mdl-38002142

ABSTRACT

The typical Korean diet contains a significant quantity of doenjang owing to its unique taste and health benefits. However, the presence of anti-nutritional and toxic substances, such as biogenic amines and microbial pathogens, in doenjang has resulted in a loss of revenue and poor consumer health. The present study focused on the identification and quantification of different biogenic amines, pathogenic Bacillus cereus, and yeast counts in 36 doenjang products (designated as De-1 to De-36, 500 g each) procured from the different cottage industries situated in different parts of the Republic of Korea. The results indicated, only three samples were contaminated with B. cereus, exceeding the recommended limit (4 log CFU/g) suggested by the national standards of Korea. A total of six distinct yeasts were identified in different doenjang samples, whose comprehensive enzymatic profiling suggested the absence of harmful enzymes such as N-acetyl-ß-glucosaminidase, α-chymotrypsin, and ß-glucuronidase. The biogenic amines were detected in the range of 67.68 mg/kg to 2556.68 mg/kg and classified into six major groups based on hierarchical cluster analysis. All doenjang samples contained tryptamine, putrescine, cadaverine, histamine, and tyramine, while 94.44% were positive for spermidine and spermine. The results documented the analysis of traditional cottage industry doenjang and suggest the need for constant monitoring to ensure the safety of food for the consumer.

3.
Discov Nano ; 18(1): 34, 2023 03 07.
Article in English | MEDLINE | ID: mdl-36881264

ABSTRACT

The detection of pollutant and toxic gases has attracted extensive attention due to the growing environmental issues. In the present investigation, free-based tetraphenyl porphyrin (TPP) and iron tetraphenyl porphyrin (FeTPP) are used to functionalize thermally reduced graphene oxide (rGO) and further used for the detection of carbon monoxide (CO). TPP and FeTPP functionalized rGO (FeTPP@rGO) sensors are fabricated on a glass substrate with thermally coated copper electrodes. The materials are characterized with X-ray diffraction (XRD), Fourier transforms infrared (FTIR) spectroscopy, Raman spectroscopy, UV-visible spectroscopy, atomic force microscopy, scanning electron microscopy, and energy dispersive spectroscopy. The current-voltage (I-V) characteristics have also been studied to demonstrate the operation of the device. In addition, the FeTPP@rGO device shows high sensitivity toward the detection of CO. By testing in the chemiresistive sensing modality, the as-fabricated device shows good response and recovery of 60 s and 120 s, respectively, with a low detection limit of 2.5 ppm.

4.
Front Chem ; 8: 803, 2020.
Article in English | MEDLINE | ID: mdl-33195028

ABSTRACT

In the present investigation, copper benzene tricarboxylate metal organic frameworks (CuBTC MOF) and Au nanoparticle incorporated CuBTC MOF (Au@CuBTC) were synthesized by the conventional solvothermal method in a round bottom flask at 105°C and kept in an oil bath. The synthesized CuBTC MOF and Au@CuBTC MOFs were characterized by structure using X-ray diffraction (XRD) spectroscopic methods including Fourier Transform Infrared spectroscopy, Raman Spectroscopy, X-ray Photoelectron Spectroscopy (XPS), and Energy dispersive spectroscopy (EDS). We also characterized them using morphological techniques such as Field emission scanning electron microscopy (FE-SEM), and electrochemical approaches that included cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). We examined thermal stability by thermogravimetric analysis (TG/DTA) and N2 adsorption-desorption isotherm by Brunauer-Emmett-Teller (BET) surface area method. Both materials were tested for the detection of lead (II) ions in aqueous media. Au nanoparticle incorporated CuBTC MOF showed great affinity and selectivity toward Pb2+ ions and achieved a lower detection limit (LOD) of 1 nM/L by differential pulse voltammetry (DPV) technique, which is far below than MCL for Pb2+ ions (0.03 µM/L) suggested by the United States (U.S.) Environmental Protection Agency (EPA) drinking water regulations.

5.
Front Chem ; 6: 451, 2018.
Article in English | MEDLINE | ID: mdl-30327766

ABSTRACT

Heavy metal ions are considered as one of the major water pollutants, revealing health hazards as well as threat to the ecosystem. Therefore, investigation of most versatile materials for the sensitive and selective detection of heavy metal ions is need of the hour. Proposed work emphasizes the synthesis of conducting polymer and carbon nanotube nanocomposite modified with chelating ligand for the detection of heavy metal ions. Carbon nanotubes are having well known features such as tuneable conductivity, low density, good charge transport ability, and current carrying capacity. Conducting polymers are the most reliable materials for sensing applications due to their environmental stability and tuning of conductivity by doping and de-doping. Formation of nanocomposite of these two idealistic materials is advantageous over the individual material, which can help to tackle the individual limitations of these materials and can form versatile materials with ideal chemical and electrical properties. Chelating ligands are the most favorable materials due to their ability of complex formation with metal ions. The present work possesses a sensing platform based on conducting polymer and carbon nanotube nanocomposite, which is stable in various aqueous media and possess good charge transfer ability. Chelating ligands played an important role in the increased selectivity toward metal ions. Moreover, in present investigation Ethylenediaminetetraacetic acid (EDTA) functionalized polypyrrole (Ppy) and single walled carbon nanotubes (SWNTs) nanocomposite was successfully synthesized by electrochemical method on stainless steel electrode (SSE). The electrochemical detection of Pb(II) ions using EDTA-Ppy/SWNTs nanocomposite was done from aqueous media. Cyclic voltammetry technique was utilized for the electrochemical synthesis of Ppy/SWNTs nanocomposite. Ppy/SWNTs nanocomposite was further modified with EDTA using dip coating technique at room temperature. The EDTA-Ppy/SWNTs modified stainless steel electrode (SSE) exhibited good sensitivity and selectivity toward heavy metal ions [Pb(II)]. Detection limit achieved for Pb(II) ions was 0.07 µM.

SELECTION OF CITATIONS
SEARCH DETAIL
...