Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Mol Inform ; 43(4): e202300183, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38258328

ABSTRACT

De novo design has been a hotly pursued topic for many years. Most recent developments have involved the use of deep learning methods for generative molecular design. Despite increasing levels of algorithmic sophistication, the design of molecules that are synthetically accessible remains a major challenge. Reaction-based de novo design takes a conceptually simpler approach and aims to address synthesisability directly by mimicking synthetic chemistry and driving structural transformations by known reactions that are applied in a stepwise manner. However, the use of a small number of hand-coded transformations restricts the chemical space that can be accessed and there are few examples in the literature where molecules and their synthetic routes have been designed and executed successfully. Here we describe the application of reaction-based de novo design to the design of synthetically accessible and biologically active compounds as proof-of-concept of our reaction vector-based software. Reaction vectors are derived automatically from known reactions and allow access to a wide region of synthetically accessible chemical space. The design was aimed at producing molecules that are active against PARP1 and which have improved brain penetration properties compared to existing PARP1 inhibitors. We synthesised a selection of the designed molecules according to the provided synthetic routes and tested them experimentally. The results demonstrate that reaction vectors can be applied to the design of novel molecules of biological relevance that are also synthetically accessible.


Subject(s)
Drug Design , Poly(ADP-ribose) Polymerase Inhibitors , Poly(ADP-ribose) Polymerase Inhibitors/chemistry , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/chemical synthesis , Humans , Poly (ADP-Ribose) Polymerase-1/antagonists & inhibitors , Poly (ADP-Ribose) Polymerase-1/metabolism , Software
2.
PLoS Negl Trop Dis ; 17(12): e0011799, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38150490

ABSTRACT

There is a need for novel chemical matter for phenotypic and target-based screens to find starting points for drug discovery programmes in neglected infectious diseases and non-hormonal contraceptives that disproportionately affect Low- and Middle-Income Countries (LMICs). In some disease areas multiple screens of corporate and other libraries have been carried out, giving rise to some valuable starting points and leading to preclinical candidates. Whilst in other disease areas, little screening has been carried out. Much screening against pathogens has been conducted phenotypically as there are few robustly validated protein targets. However, many of the active compound series identified share the same molecular targets. To address the need for new chemical material, in this article we describe the design of a new library, designed for screening in drug discovery programmes for neglected infectious diseases. The compounds have been selected from the Enamine REAL (REadily AccessibLe) library, a virtual library which contains approximately 4.5 billion molecules. The molecules theoretically can be synthesized quickly using commercially available intermediates and building blocks. The vast majority of these have not been prepared before, so this is a source of novel compounds. In this paper we describe the design of a diverse library of 30,000 compounds from this collection (graphical abstract). The new library will be made available to laboratories working in neglected infectious diseases, subject to a review process. The project has been supported by the Bill & Melinda Gates Foundation and the Wellcome Trust (Wellcome).


Subject(s)
Communicable Diseases , Global Health , Humans , Small Molecule Libraries/chemistry , Drug Discovery , Communicable Diseases/diagnosis
3.
Mol Inform ; 41(4): e2100207, 2022 04.
Article in English | MEDLINE | ID: mdl-34750989

ABSTRACT

Reaction-based de novo design refers to the generation of synthetically accessible molecules using transformation rules extracted from known reactions in the literature. In this context, we have previously described the extraction of reaction vectors from a reactions database and their coupling with a structure generation algorithm for the generation of novel molecules from a starting material. An issue when designing molecules from a starting material is the combinatorial explosion of possible product molecules that can be generated, especially for multistep syntheses. Here, we present the development of RENATE, a reaction-based de novo design tool, which is based on a pseudo-retrosynthetic fragmentation of a reference ligand and an inside-out approach to de novo design. The reference ligand is fragmented; each fragment is used to search for similar fragments as building blocks; the building blocks are combined into products using reaction vectors; and a synthetic route is suggested for each product molecule. The RENATE methodology is presented followed by a retrospective validation to recreate a set of approved drugs. Results show that RENATE can generate very similar or even identical structures to the corresponding input drugs, hence validating the fragmentation, search, and design heuristics implemented in the tool.


Subject(s)
Algorithms , Ligands , Retrospective Studies
4.
Methods Mol Biol ; 2390: 103-112, 2022.
Article in English | MEDLINE | ID: mdl-34731465

ABSTRACT

The development of vaccines for the treatment of COVID-19 is paving the way for new hope. Despite this, the risk of the virus mutating into a vaccine-resistant variant still persists. As a result, the demand of efficacious drugs to treat COVID-19 is still pertinent. To this end, scientists continue to identify and repurpose marketed drugs for this new disease. Many of these drugs are currently undergoing clinical trials and, so far, only one has been officially approved by FDA. Drug repurposing is a much faster route to the clinic than standard drug development of novel molecules, nevertheless in a pandemic this process is still not fast enough to halt the spread of the virus. Artificial intelligence has already played a large part in hastening the drug discovery process, not only by facilitating the selection of potential drug candidates but also in monitoring the pandemic and enabling faster diagnosis of patients. In this chapter, we focus on the impact and challenges that artificial intelligence has demonstrated thus far with respect to drug repurposing of therapeutics for the treatment of COVID-19.


Subject(s)
Antiviral Agents/therapeutic use , Artificial Intelligence , COVID-19 Drug Treatment , Drug Discovery , Drug Repositioning , SARS-CoV-2/drug effects , Animals , Antiviral Agents/adverse effects , COVID-19/diagnosis , COVID-19/virology , Host-Pathogen Interactions , Humans , Machine Learning , Molecular Structure , SARS-CoV-2/pathogenicity , Structure-Activity Relationship
5.
Trends Pharmacol Sci ; 42(6): 431-433, 2021 06.
Article in English | MEDLINE | ID: mdl-33867130

ABSTRACT

Latest research shows that SERPINE1 overexpression has an important role in Coronavirus 2019 (COVID-19)-associated coagulopathy leading to acute respiratory distress syndrome (ARDS). However, ways to target this protein remain elusive. In this forum, we discuss recent evidence linking SERPINE1 with COVID-19-related ARDS and summarize the available data on inhibitors of this target.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Complement Activation , Humans , SARS-CoV-2
6.
Drug Discov Today ; 26(2): 442-454, 2021 02.
Article in English | MEDLINE | ID: mdl-33259801

ABSTRACT

Serine protease inhibitors (serpins) are a large family of proteins that regulate and control crucial physiological processes, such as inflammation, coagulation, thrombosis and thrombolysis, and immune responses. The extraordinary impact that these proteins have on numerous crucial pathways makes them an attractive target for drug discovery. In this review, we discuss recent advances in research on small-molecule modulators of serpins, examine their mode of action, analyse the structural data from crystallised protein-ligand complexes, and highlight the potential obstacles and possible therapeutic perspectives. The application of in silico methods for rational drug discovery is also summarised. In addition, we stress the need for continued research in this field.


Subject(s)
Drug Discovery , Serine Proteinase Inhibitors/pharmacology , Serpins/drug effects , Computer Simulation , Crystallization , Humans , Ligands , Serpins/metabolism
7.
J Comput Aided Mol Des ; 34(7): 783-803, 2020 07.
Article in English | MEDLINE | ID: mdl-32112286

ABSTRACT

Reaction-based de novo design refers to the in-silico generation of novel chemical structures by combining reagents using structural transformations derived from known reactions. The driver for using reaction-based transformations is to increase the likelihood of the designed molecules being synthetically accessible. We have previously described a reaction-based de novo design method based on reaction vectors which are transformation rules that are encoded automatically from reaction databases. A limitation of reaction vectors is that they account for structural changes that occur at the core of a reaction only, and they do not consider the presence of competing functionalities that can compromise the reaction outcome. Here, we present the development of a Reaction Class Recommender to enhance the reaction vector framework. The recommender is intended to be used as a filter on the reaction vectors that are applied during de novo design to reduce the combinatorial explosion of in-silico molecules produced while limiting the generated structures to those which are most likely to be synthesisable. The recommender has been validated using an external data set extracted from the recent medicinal chemistry literature and in two simulated de novo design experiments. Results suggest that the use of the recommender drastically reduces the number of solutions explored by the algorithm while preserving the chance of finding relevant solutions and increasing the global synthetic accessibility of the designed molecules.


Subject(s)
Drug Design , Algorithms , Chemistry Techniques, Synthetic/methods , Chemistry Techniques, Synthetic/statistics & numerical data , Chemistry, Pharmaceutical/methods , Chemistry, Pharmaceutical/statistics & numerical data , Computer Simulation , Computer-Aided Design , Databases, Chemical , Databases, Pharmaceutical , Humans , Machine Learning , Small Molecule Libraries
8.
J Chem Theory Comput ; 16(4): 2814-2824, 2020 Apr 14.
Article in English | MEDLINE | ID: mdl-32096994

ABSTRACT

G-protein coupled receptors (GPCRs) are the largest superfamily of membrane proteins, regulating almost every aspect of cellular activity and serving as key targets for drug discovery. We have identified an accurate and reliable computational method to characterize the strength and chemical nature of the interhelical interactions between the residues of transmembrane (TM) domains during different receptor activation states, something that cannot be characterized solely by visual inspection of structural information. Using the fragment molecular orbital (FMO) quantum mechanics method to analyze 35 crystal structures representing different branches of the class A GPCR family, we have identified 69 topologically equivalent TM residues that form a consensus network of 51 inter-TM interactions, providing novel results that are consistent with and help to rationalize experimental data. This discovery establishes a comprehensive picture of how defined molecular forces govern specific interhelical interactions which, in turn, support the structural stability, ligand binding, and activation of GPCRs.


Subject(s)
Receptors, G-Protein-Coupled/chemistry , Ligands , Protein Binding , Protein Conformation , Quantum Theory
9.
J Chem Inf Model ; 59(10): 4167-4187, 2019 10 28.
Article in English | MEDLINE | ID: mdl-31529948

ABSTRACT

Reaction classification has often been considered an important task for many different applications, and has traditionally been accomplished using hand-coded rule-based approaches. However, the availability of large collections of reactions enables data-driven approaches to be developed. We present the development and validation of a 336-class machine learning-based classification model integrated within a Conformal Prediction (CP) framework to associate reaction class predictions with confidence estimations. We also propose a data-driven approach for "dynamic" reaction fingerprinting to maximize the effectiveness of reaction encoding, as well as developing a novel reaction classification system that organizes labels into four hierarchical levels (SHREC: Sheffield Hierarchical REaction Classification). We show that the performance of the CP augmented model can be improved by defining confidence thresholds to detect predictions that are less likely to be false. For example, the external validation of the model reports 95% of predictions as correct by filtering out less than 15% of the uncertain classifications. The application of the model is demonstrated by classifying two reaction data sets: one extracted from an industrial ELN and the other from the medicinal chemistry literature. We show how confidence estimations and class compositions across different levels of information can be used to gain immediate insights on the nature of reaction collections and hidden relationships between reaction classes.


Subject(s)
Chemistry, Pharmaceutical , Databases, Chemical , Machine Learning , Models, Chemical , Molecular Structure
10.
Commun Chem ; 12018 Apr 05.
Article in English | MEDLINE | ID: mdl-29863194

ABSTRACT

Conserved water molecules are of interest in drug design, as displacement of such waters can lead to higher affinity ligands and in some cases, contribute towards selectivity. Bromodomains, small protein domains involved in the epigenetic regulation of gene transcription, display a network of four conserved water molecules in their binding pockets and have recently been the focus of intense medicinal chemistry efforts. Understanding why certain bromodomains have displaceable water molecules and others do not is extremely challenging, and it remains unclear which water molecules in a given bromodomain can be targeted for displacement. Here we estimate the stability of the conserved water molecules in 35 bromodomains via binding free energy calculations using all-atom grand canonical Monte Carlo simulations. Encouraging quantitative agreement to the available experimental evidence is found. We thus discuss the expected ease of water displacement in different bromodomains and the implications for ligand selectivity.

11.
J Chem Inf Model ; 57(9): 2203-2221, 2017 09 25.
Article in English | MEDLINE | ID: mdl-28786670

ABSTRACT

Binding free energy calculations that make use of alchemical pathways are becoming increasingly feasible thanks to advances in hardware and algorithms. Although relative binding free energy (RBFE) calculations are starting to find widespread use, absolute binding free energy (ABFE) calculations are still being explored mainly in academic settings due to the high computational requirements and still uncertain predictive value. However, in some drug design scenarios, RBFE calculations are not applicable and ABFE calculations could provide an alternative. Computationally cheaper end-point calculations in implicit solvent, such as molecular mechanics Poisson-Boltzmann surface area (MMPBSA) calculations, could too be used if one is primarily interested in a relative ranking of affinities. Here, we compare MMPBSA calculations to previously performed absolute alchemical free energy calculations in their ability to correlate with experimental binding free energies for three sets of bromodomain-inhibitor pairs. Different MMPBSA approaches have been considered, including a standard single-trajectory protocol, a protocol that includes a binding entropy estimate, and protocols that take into account the ligand hydration shell. Despite the improvements observed with the latter two MMPBSA approaches, ABFE calculations were found to be overall superior in obtaining correlation with experimental affinities for the test cases considered. A difference in weighted average Pearson ([Formula: see text]) and Spearman ([Formula: see text]) correlations of 0.25 and 0.31 was observed when using a standard single-trajectory MMPBSA setup ([Formula: see text] = 0.64 and [Formula: see text] = 0.66 for ABFE; [Formula: see text] = 0.39 and [Formula: see text] = 0.35 for MMPBSA). The best performing MMPBSA protocols returned weighted average Pearson and Spearman correlations that were about 0.1 inferior to ABFE calculations: [Formula: see text] = 0.55 and [Formula: see text] = 0.56 when including an entropy estimate, and [Formula: see text] = 0.53 and [Formula: see text] = 0.55 when including explicit water molecules. Overall, the study suggests that ABFE calculations are indeed the more accurate approach, yet there is also value in MMPBSA calculations considering the lower compute requirements, and if agreement to experimental affinities in absolute terms is not of interest. Moreover, for the specific protein-ligand systems considered in this study, we find that including an explicit ligand hydration shell or a binding entropy estimate in the MMPBSA calculations resulted in significant performance improvements at a negligible computational cost.


Subject(s)
Entropy , Molecular Dynamics Simulation , Databases, Protein , Protein Domains
12.
ACS Chem Biol ; 12(6): 1593-1602, 2017 06 16.
Article in English | MEDLINE | ID: mdl-28414209

ABSTRACT

In this work, we describe the computational ("in silico") mode-of-action analysis of CNS-active drugs, which is taking both multiple simultaneous hypotheses as well as sets of protein targets for each mode-of-action into account, and which was followed by successful prospective in vitro and in vivo validation. Using sleep-related phenotypic readouts describing both efficacy and side effects for 491 compounds tested in rat, we defined an "optimal" (desirable) sleeping pattern. Compounds were subjected to in silico target prediction (which was experimentally confirmed for 21 out of 28 cases), followed by the utilization of decision trees for deriving polypharmacological bioactivity profiles. We demonstrated that predicted bioactivities improved classification performance compared to using only structural information. Moreover, DrugBank molecules were processed via the same pipeline, and compounds in many cases not annotated as sedative-hypnotic (alcaftadine, benzatropine, palonosetron, ecopipam, cyproheptadine, sertindole, and clopenthixol) were prospectively validated in vivo. Alcaftadine, ecopipam cyproheptadine, and clopenthixol were found to promote sleep as predicted, benzatropine showed only a small increase in NREM sleep, whereas sertindole promoted wakefulness. To our knowledge, the sedative-hypnotic effects of alcaftadine and ecopipam have not been previously discussed in the literature. The method described extends previous single-target, single-mode-of-action models and is applicable across disease areas.


Subject(s)
Hypnotics and Sedatives/pharmacology , Polypharmacology , Animals , Benzazepines/pharmacology , Biomedical Research/methods , Computer Simulation , Hypnotics and Sedatives/classification , Imidazoles/pharmacology , Rats
13.
J Am Chem Soc ; 139(2): 946-957, 2017 01 18.
Article in English | MEDLINE | ID: mdl-28009512

ABSTRACT

Binding selectivity is a requirement for the development of a safe drug, and it is a critical property for chemical probes used in preclinical target validation. Engineering selectivity adds considerable complexity to the rational design of new drugs, as it involves the optimization of multiple binding affinities. Computationally, the prediction of binding selectivity is a challenge, and generally applicable methodologies are still not available to the computational and medicinal chemistry communities. Absolute binding free energy calculations based on alchemical pathways provide a rigorous framework for affinity predictions and could thus offer a general approach to the problem. We evaluated the performance of free energy calculations based on molecular dynamics for the prediction of selectivity by estimating the affinity profile of three bromodomain inhibitors across multiple bromodomain families, and by comparing the results to isothermal titration calorimetry data. Two case studies were considered. In the first one, the affinities of two similar ligands for seven bromodomains were calculated and returned excellent agreement with experiment (mean unsigned error of 0.81 kcal/mol and Pearson correlation of 0.75). In this test case, we also show how the preferred binding orientation of a ligand for different proteins can be estimated via free energy calculations. In the second case, the affinities of a broad-spectrum inhibitor for 22 bromodomains were calculated and returned a more modest accuracy (mean unsigned error of 1.76 kcal/mol and Pearson correlation of 0.48); however, the reparametrization of a sulfonamide moiety improved the agreement with experiment.

14.
Adv Exp Med Biol ; 922: 161-181, 2016.
Article in English | MEDLINE | ID: mdl-27553242

ABSTRACT

Most of the previous content of this book has focused on obtaining the structures of membrane proteins. In this chapter we explore how those structures can be further used in two key ways. The first is their use in structure based drug design (SBDD) and the second is how they can be used to extend our understanding of their functional activity via the use of molecular dynamics. Both aspects now heavily rely on computations. This area is vast, and alas, too large to consider in depth in a single book chapter. Thus where appropriate we have referred the reader to recent reviews for deeper assessment of the field. We discuss progress via the use of examples from two main drug target areas; G-protein coupled receptors (GPCRs) and ion channels. We end with a discussion of some of the main challenges in the area.


Subject(s)
Drug Discovery/methods , Membrane Proteins/chemistry , Drug Design , Forecasting , Histamine H3 Antagonists/chemistry , Histamine H3 Antagonists/pharmacology , Humans , Kinetics , Models, Molecular , Molecular Docking Simulation , Molecular Dynamics Simulation , Molecular Targeted Therapy , Obesity/drug therapy , Orexin Receptors/drug effects , Protein Binding , Protein Conformation , Receptors, G-Protein-Coupled/antagonists & inhibitors , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/drug effects , Receptors, Histamine , Receptors, Histamine H4 , Receptors, Somatostatin/antagonists & inhibitors , Serotonin 5-HT2 Receptor Agonists/chemistry , Serotonin 5-HT2 Receptor Agonists/pharmacology , Structure-Activity Relationship , Water
15.
Curr Opin Pharmacol ; 30: 14-21, 2016 10.
Article in English | MEDLINE | ID: mdl-27419904

ABSTRACT

G-protein coupled receptor (GPCR) modeling approaches are widely used in the hit-to-lead and lead optimization stages of drug discovery. Modern protocols that involve molecular dynamics simulation can address key issues such as the free energy of binding (affinity), ligand-induced GPCR flexibility, ligand binding kinetics, conserved water positions and their role in ligand binding and the effects of mutations. The goals of these calculations are to predict the structures of the complexes between existing ligands and their receptors, to understand the key interactions and to utilize these insights in the design of new molecules with improved binding, selectivity or other pharmacological properties. In this review we present a brief survey of various computational approaches illustrated through a hierarchical GPCR modeling protocol and its prospective application in three industrial drug discovery projects.


Subject(s)
Drug Discovery/methods , Molecular Dynamics Simulation , Receptors, G-Protein-Coupled/metabolism , Drug Design , Humans , Ligands , Protein Binding
16.
Chem Sci ; 7(1): 207-218, 2016 Jan 14.
Article in English | MEDLINE | ID: mdl-26798447

ABSTRACT

Accurate prediction of binding affinities has been a central goal of computational chemistry for decades, yet remains elusive. Despite good progress, the required accuracy for use in a drug-discovery context has not been consistently achieved for drug-like molecules. Here, we perform absolute free energy calculations based on a thermodynamic cycle for a set of diverse inhibitors binding to bromodomain-containing protein 4 (BRD4) and demonstrate that a mean absolute error of 0.6 kcal mol-1 can be achieved. We also show a similar level of accuracy (1.0 kcal mol-1) can be achieved in pseudo prospective approach. Bromodomains are epigenetic mark readers that recognize acetylation motifs and regulate gene transcription, and are currently being investigated as therapeutic targets for cancer and inflammation. The unprecedented accuracy offers the exciting prospect that the binding free energy of drug-like compounds can be predicted for pharmacologically relevant targets.

17.
Comb Chem High Throughput Screen ; 18(3): 323-30, 2015.
Article in English | MEDLINE | ID: mdl-25747441

ABSTRACT

The increase of publicly available bioactivity data has led to the extensive development and usage of in silico bioactivity prediction algorithms. A particularly popular approach for such analyses is the multiclass Naïve Bayes, whose output is commonly processed by applying empirically-derived likelihood score thresholds. In this work, we describe a systematic way for deriving score cut-offs on a per-protein target basis and compare their performance with global thresholds on a large scale using both 5-fold cross-validation (ChEMBL 14, 189k ligand-protein pairs over 477 protein targets) and external validation (WOMBAT, 63k pairs, 421 targets). The individual protein target cut-offs derived were compared to global cut-offs ranging from -10 to 40 in score bouts of 2.5. The results indicate that individual thresholds had equal or better performance in all comparisons with global thresholds, ranging from 95% of protein targets to 57.96%. It is shown that local thresholds behave differently for particular families of targets (CYPs, GPCRs, Kinases and TFs). Furthermore, we demonstrate the discrepancy in performance when we move away from the training dataset chemical space, using Tanimoto similarity as a metric (from 0 to 1 in steps of 0.2). Finally, the individual protein score cut-offs derived for the in silico bioactivity application used in this work are released, as well as the reproducible and transferable KNIME workflows used to carry out the analysis.


Subject(s)
Proteins/chemistry , Small Molecule Libraries/chemistry , Algorithms , Bayes Theorem , Humans , Ligands , Proteins/metabolism , Small Molecule Libraries/pharmacology
18.
Mol Biosyst ; 11(1): 86-96, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25254964

ABSTRACT

Integrating gene expression profiles with certain proteins can improve our understanding of the fundamental mechanisms in protein-ligand binding. This paper spotlights the integration of gene expression data and target prediction scores, providing insight into mechanism of action (MoA). Compounds are clustered based upon the similarity of their predicted protein targets and each cluster is linked to gene sets using Linear Models for Microarray Data. MLP analysis is used to generate gene sets based upon their biological processes and a qualitative search is performed on the homogeneous target-based compound clusters to identify pathways. Genes and proteins were linked through pathways for 6 of the 8 MCF7 and 6 of the 11 PC3 clusters. Three compound clusters are studied; (i) the target-driven cluster involving HSP90 inhibitors, geldanamycin and tanespimycin induces differential expression for HSP90-related genes and overlap with pathway response to unfolded protein. Gene expression results are in agreement with target prediction and pathway annotations add information to enable understanding of MoA. (ii) The antipsychotic cluster shows differential expression for genes LDLR and INSIG-1 and is predicted to target CYP2D6. Pathway steroid metabolic process links the protein and respective genes, hypothesizing the MoA for antipsychotics. A sub-cluster (verepamil and dexverepamil), although sharing similar protein targets with the antipsychotic drug cluster, has a lower intensity of expression profile on related genes, indicating that this method distinguishes close sub-clusters and suggests differences in their MoA. Lastly, (iii) the thiazolidinediones drug cluster predicted peroxisome proliferator activated receptor (PPAR) PPAR-alpha, PPAR-gamma, acyl CoA desaturase and significant differential expression of genes ANGPTL4, FABP4 and PRKCD. The targets and genes are linked via PPAR signalling pathway and induction of apoptosis, generating a hypothesis for the MoA of thiazolidinediones. Our analysis show one or more underlying MoA for compounds and were well-substantiated with literature.


Subject(s)
Computational Biology/methods , Computer Simulation , Drug Discovery , Gene Expression Regulation , Gene Regulatory Networks , Transcriptome , Algorithms , Anti-Inflammatory Agents/pharmacology , Antineoplastic Agents/pharmacology , Antipsychotic Agents/pharmacology , Cell Line, Tumor , Cluster Analysis , Databases, Genetic , Drug Discovery/methods , Gene Expression Regulation/drug effects , Humans , Hypoglycemic Agents/pharmacology , Signal Transduction
19.
Future Med Chem ; 6(18): 2029-56, 2014.
Article in English | MEDLINE | ID: mdl-25531967

ABSTRACT

BACKGROUND: An in silico mechanism-of-action analysis protocol was developed, comprising molecule bioactivity profiling, annotation of predicted targets with pathways and calculation of enrichment factors to highlight targets and pathways more likely to be implicated in the studied phenotype. RESULTS: The method was applied to a cytotoxicity phenotypic endpoint, with enriched targets/pathways found to be statistically significant when compared with 100 random datasets. Application on a smaller apoptotic set (10 molecules) did not allowed to obtain statistically relevant results, suggesting that the protocol requires modification such as analysis of the most frequently predicted targets/annotated pathways. CONCLUSION: Pathway annotations improved the mechanism-of-action information gained by target prediction alone, allowing a better interpretation of the predictions and providing better mapping of targets onto pathways.


Subject(s)
Computational Biology , Computer Simulation , Small Molecule Libraries/metabolism , Animals , Apoptosis/drug effects , Mice , Small Molecule Libraries/chemistry , Small Molecule Libraries/toxicity , Stem Cells/cytology , Stem Cells/drug effects
20.
Mol Inform ; 32(11-12): 1009-24, 2013 Dec.
Article in English | MEDLINE | ID: mdl-27481146

ABSTRACT

The simultaneous increase of computational power and the availability of chemical and biological data have contributed to the recent popularity of in silico bioactivity prediction algorithms. Such methods are commonly used to infer the 'Mechanism of Action' of small molecules and they can also be employed in cases where full bioactivity profiles have not been established experimentally. However, protein target predictions by themselves do not necessarily capture information about the effect of a compound on a biological system, and hence merging their output with a systems biology approach can help to better understand the complex network modulation which leads to a particular phenotype. In this work, we review approaches and applications of target prediction, as well as their shortcomings, and demonstrate two extensions of this concept which are exemplified using phenotypic readouts from a chemical genetic screen in Xenopus laevis. In particular, the experimental observations are linked to their predicted bioactivity profiles. Predicted targets are annotated with pathways, which lead to further biological insight. Moreover, we subject the prediction to further machine learning algorithms, namely decision trees, to capture the differential pharmacology of ligand-target interactions in biological systems. Both methodologies hence provide new insight into understanding the Mechanism of Action of compound activities from phenotypic screens.

SELECTION OF CITATIONS
SEARCH DETAIL
...