Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Animals (Basel) ; 12(12)2022 Jun 09.
Article in English | MEDLINE | ID: mdl-35739839

ABSTRACT

In this study, we provide comprehensive analyses of mesenchymal stem cells (MSCs) isolated from three types of canine tissues: bone marrow (BM-MSCs), adipose tissue (AT-MSCs) and amniotic tissue (AM-MSCs). We compare their morphology, phenotype, multilineage potential and proliferation activity. The BM-MSCs and AM-MSCs showed fibroblast-like shapes against the spindle shape of the AT-MSCs. All populations showed strong osteogenic and chondrogenic potential. However, we observed phenotypic differences. The BM-MSCs and AT-MSCs revealed high expression of CD29, CD44, CD90 and CD105 positivity compared to the AM-MSCs, which showed reduced expression of all the analysed CD markers. Similarly, the isolation yield and proliferation varied depending on the source. The highest isolation yield and proliferation were detected in the population of AT-MSCs, while the AM-MSCs showed a high yield of cells, but the lowest proliferation activity, in contrast to the BM-MSCs which had the lowest isolation yield. Thus, the present data provide assumptions for obtaining a homogeneous MSC derived from all three canine tissues for possible applications in veterinary regenerative medicine, while the origin of isolated MSCs must always be taken into account.

2.
Materials (Basel) ; 12(20)2019 Oct 22.
Article in English | MEDLINE | ID: mdl-31652498

ABSTRACT

Urethral defects originating from congenital malformations, trauma, inflammation or carcinoma still pose a great challenge to modern urology. Recent therapies have failed many times and have not provided the expected results. This negatively affects patients' quality of life. By combining cells, bioactive molecules, and biomaterials, tissue engineering can provide promising treatment options. This review focused on scaffold systems for urethra reconstruction. We also discussed different technologies, such as electrospinning and 3D bioprinting which provide great possibility for the preparation of a hollow structure with well-defined architecture.

3.
Acta Bioeng Biomech ; 21(4): 101-110, 2019.
Article in English | MEDLINE | ID: mdl-32022801

ABSTRACT

PURPOSE: The objective of this study was to fabricate PLA-based porous scaffold by 3D printing technology and to evaluate their cytotoxicity and biocompatibility under in vitro conditions in respect to bone tissue engineering. MATERIAL AND METHODS: Pure PLA in filamentous form was processed via 3D printing technology of fused filament fabrication into porous scaffolds. The structure and porosity of scaffolds were measured by metrotomography. PLA scaffolds were pre-treated by human serum, foetal bovine serum and complete cell culture medium to enhance bio-attractivity of the scaffold's surface for the adherence of the cells. Cells were enzymatically isolated from the periosteum of the proximal tibia and then expanded in monolayer. Periosteum-derived osteoprogenitors (PDOs) were seeded on the pre-treated PLA scaffolds and subsequent cell proliferation was measured by commercially available cell proliferation assay. Adherence of PDOs on the PLA scaffold was confirmed by scanning electron microscopy (SEM). RESULTS: Prepared scaffolds had well-defined structure and were characterized by uniform distribution of pores. They were non-toxic and biocompatible with PDOs, however, PLA scaffold with the periosteum-derived progenitor cells was significantly better in the group of scaffolds pre-treated with normal human serum. CONCLUSIONS: The obtained PLA porous scaffolds favored attachment of periosteum derived progenitors and proliferation, furthermore, cells penetrated into the scaffold through the interstitial pores which was meaningful for cytocompatibility evaluation.


Subject(s)
Bone and Bones/physiology , Polyesters/pharmacology , Printing, Three-Dimensional , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Acid-Base Equilibrium/drug effects , Bone and Bones/diagnostic imaging , Bone and Bones/drug effects , Cell Adhesion/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Female , Humans , Middle Aged , Periosteum/cytology , Porosity , Stem Cells/cytology , Stem Cells/ultrastructure , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL
...