Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Rapid Commun Mass Spectrom ; 30(23): 2497-2507, 2016 Dec 15.
Article in English | MEDLINE | ID: mdl-27650360

ABSTRACT

RATIONALE: A cleavable linker is designed and synthesized for the selective capture of azide-containing compounds. This article presents a proof of concept methodology involving the use of peptide-functionalized aminopropyl silica, on which the peptide is constructed by solid-phase peptide synthesis. METHODS: The peptide linker has L-propargylglycine (Pra) at one terminal end to allow the conjugation of azide-containing molecules by copper assisted azide alkyne cycloaddition, also known as click reaction. L-Arginine (Arg) is placed just before Pra to permit the release of the captured product by tryptic cleavage. Three glycine (Gly) residues, as part of the linker, are appended to the silica bead to present a spacer section that allows efficient tryptic cleavage devoid of steric hindrance imposed by the bulky bead. The bead composition is Si-O-propyl-NH-Gly-Gly-Gly-Arg-Pra. RESULTS: This solid-phase material can be used to capture and release azide-functionalized compounds. The beads are first tested on three azido compounds, 2-azido-2-deoxyglucose (ADG), BOC-p-azido-Phe-OH (BAzPhe), where BOC = tert-butoxycarbonyl, and tetraacetylated-N-azidomannosamine (Ac4 ManNAz). Copper-mediated click reaction conditions are used and released products are characterized by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and tandem MS (MS/MS). CONCLUSIONS: This method allows easy identification of captured compounds based on mass and fragmentation analysis. Moreover, it is useful for the analysis of small azide-containing compounds by MALDI-TOF-MS which may not be possible otherwise due to matrix interferences. The insertion of isotopically labeled Arg residues provides the possibility of multiplex analysis, from which the beads have been called MAGIC (for Multiplexed Azido-Group Isotopic Capture). Copyright © 2016 John Wiley & Sons, Ltd.

2.
Rapid Commun Mass Spectrom ; 29(19): 1817-26, 2015 Oct 15.
Article in English | MEDLINE | ID: mdl-26331933

ABSTRACT

RATIONALE: In the expression of recombinant proteins, an important parameter to control or influence is their level of sialylation. Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometric (MS) methods tend to either underestimate (positive mode) or overestimate (negative mode) the content of sialylated vs. neutral glycans in glycoproteins. Esterification methods have been developed for free sialylated glycans and sialylated Asn-glycans, allowing these acidic groups to ionize with the same efficiency as neutral sugars. METHODS: Here we describe a method which modifies glycopeptides by esterification. This simple procedure is applied to glycopeptides isolated from tryptic digests of monoclonal antibodies (mAbs), some highly sialylated. To better understand the effect of esterification on the peptide backbone, synthetic EEQYNSTYR was esterified and studied by tandem mass spectrometry (MS/MS). Acetamidation of EEQYNSTYR was also studied as some mAb samples had been overalkylated prior to tryptic digestion. RESULTS: As a general trend, ethyl-esterification or lactonization is observed for each sialic acid on glycoforms of EEQYNSTYR (the N-glycosylated tryptic peptide of IgG Fc), depending on the branching position of the sialic acid (α2,3 or α2,6). Esterification also affects the carboxyl groups in the peptide, including the C-terminal COOH. CONCLUSIONS: For antibody analysis, MALDI-MS ion abundances give a better semi-quantitative estimate of sialylation levels for esterified than for unreacted glycopeptides. The method is simple to use and helps to differentiate the branching patterns of sialic acids in antibodies.


Subject(s)
Antibodies/chemistry , Glycopeptides/analysis , Glycopeptides/chemistry , N-Acetylneuraminic Acid/analysis , Esterification , Humans , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Tandem Mass Spectrometry
3.
Anal Chim Acta ; 891: 179-89, 2015 Sep 03.
Article in English | MEDLINE | ID: mdl-26388377

ABSTRACT

Glycans are known to be involved in a variety of biological processes throughout human physiology. Mass spectrometry has demonstrated itself as powerful analytical tool for quantitative and structural characterization of glycans. Studying these molecules at the glycopeptide level however, offers distinct advantages, namely the ability to characterize both the glycan and peptide fragments simultaneously, and moreover the ability to assign site specific heterogeneity. In light of this, peptides often dominate the spectrum and hinder the ionization efficiency of glycopeptides. For this reason, enrichment protocols prior to downstream MS analysis need to be developed. Here, we discuss the synthesis and use of carboxymethyl chitosan (CMCH) to enrich glycopeptides from a 12 protein mixture for MS analysis. This protocol was compared to a commercially available glycopeptide enrichment kit offered by EMD Millipore through the use of tandem mass tags (TMT) for relative quantification. Using this approach, we identified 98 unique N-linked glycopeptides and observed, that CMCH was able to enrich more sialylation than the commercial kit. In addition, we observed a trend based on TMT reporter ratios with respect to increasing sialylation. This corroborated that this stationary phase was exhibiting a mixed-mode enrichment through both hydrophilic interaction liquid chromatography (HILIC) and weak anion exchange (WAX) principles.


Subject(s)
Chitosan/analogs & derivatives , Glycopeptides/isolation & purification , Proteins/chemistry , Tandem Mass Spectrometry , Amino Acid Sequence , Animals , Cattle , Chickens , Chitosan/chemical synthesis , Chitosan/chemistry , Glycopeptides/analysis , Horses , Humans , Molecular Sequence Data , Tandem Mass Spectrometry/methods
4.
Anal Chem ; 85(22): 10895-903, 2013 Nov 19.
Article in English | MEDLINE | ID: mdl-24111716

ABSTRACT

Glycoproteomics represent the field of study of the dynamic changes occurring among glycoconjugates within the cellular compartments. Changes in glycosylation have been linked to various diseases, including metastatic carcinomas in which the 9 carbon sialic acid moiety has been shown to play a prominent role. The common method used to study these aberrant changes most often includes a mass spectrometer at some stage in the workflow. However, serum samples contain many proteins which inhibit the analysis of these glycosylation changes, and ergo, enrichment steps are employed as a measure to help alleviate this ailment. Routinely, this is accomplished using lectins, either alone or in combination, to retrieve proteins with specific sugar linkages within the serum sample. This methodology, although known to be very specific, requires many washing steps, making it a cumbersome addition to a high throughput workflow. Presented here is an alternative protocol using custom-made amine functionalized magnetic nanoparticles (MNP) which are nearly 4× smaller than those used before for similar purposes. The developed protocol is based on both hydrophilic interaction and weak anion exchange principles, allowing it to target glycopeptides but, more specifically, those which contain sialylation. For quantification purposes, tandem mass tags from Thermo Scientific were utilized to compare the enrichment efficiencies between the magnetic nanoparticle method and a commercially available glycopeptide enrichment kit offered through EMD Millipore. The MNP method is fast (~10 min) and simple and can quantitatively and qualitatively enrich sialylated glycopeptides more than the commercially available kit.


Subject(s)
Glycopeptides/analysis , Glycopeptides/chemistry , Glycoproteins/analysis , Magnetics , Magnetite Nanoparticles/chemistry , Proteomics , Animals , Cattle , Glycosylation , Humans , Spectrometry, Mass, Electrospray Ionization , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Tandem Mass Spectrometry
5.
Carbohydr Res ; 345(6): 792-801, 2010 Apr 19.
Article in English | MEDLINE | ID: mdl-20189550

ABSTRACT

In this report we describe an on-column method for glycopeptide enrichment with cellulose as a solid-phase extraction material. The method was developed using tryptic digests of several standard glycoproteins and validated with more complex standard protein digest mixtures. Glycopeptides of different masses containing neutral and acidic glycoforms of both N- and O-linked sugars were obtained in good yield by this method. Upon isolation, glycopeptides may be subjected to further glycoproteomic and glycomic workflows for the purpose of identifying glycoproteins present in the sample and characterizing their glycosylation sites, as well as their global and site-specific glycosylation profiles at the glycopeptide level. Detailed structural analysis of glycoforms may then be performed at the glycan level upon chemical or enzymatic release of the oligosaccharides. Aiming at complementing other purification methods, this technique is extremely simple, cost-effective, and efficient. Glycopeptide enrichment was verified and validated by nano liquid chromatography-tandem mass spectrometry (LC-MS/MS) combining electron-transfer dissociation (ETD) and collision-activated dissociation (CAD) fragmentation techniques.


Subject(s)
Cellulose/chemistry , Chromatography, Liquid/methods , Glycopeptides/chemistry , Tandem Mass Spectrometry/methods , Amino Acid Sequence , Animals , Cattle , Glycosylation , Molecular Sequence Data , alpha-Fetoproteins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...