Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Pharm Sci ; 105(9): 2873-2878, 2016 09.
Article in English | MEDLINE | ID: mdl-27179671

ABSTRACT

Atopic dermatitis of sensitive areas such as the face, particularly in children, is a difficult disease to treat as the standard therapeutic, topical steroids, is contraindicated for this application in children. Hydrocortisone (HC) can be used in these instances because it has been shown to be safe, but is often ineffective as it is a relatively weak steroid, especially at over-the-counter concentrations. To enhance the local topical activity of HC, the terminal inactive metabolite of prednisolone, Δ(1)-cortienic acid (Δ(1)-CA), is added to HC, as Δ(1)-CA preferentially binds transcortin, liberating more HC to elicit its therapeutic effect. Skin blanching studies, which are used to evaluate the potency of topical steroids, were employed to assess the ability of Δ(1)-CA to enhance the activity of HC. The results demonstrate that Δ(1)-CA, when applied in combination with HC, does indeed potentiate the vasoconstriction effect of topically applied HC, while having no effect alone. Thus, addition of the inert prednisolone metabolite Δ(1)-CA can increase the therapeutic effect of over-the-counter concentrations of HC when applied topically.


Subject(s)
Hydrocortisone/administration & dosage , Hydrocortisone/pharmacology , Transcortin/pharmacology , Administration, Cutaneous , Administration, Topical , Binding, Competitive , Forearm , Humans , Hydrocortisone/chemistry , Nonprescription Drugs , Prednisolone/chemistry , Prednisolone/metabolism , Protein Binding , Regional Blood Flow/drug effects , Skin/blood supply , Skin/drug effects , Skin Absorption/drug effects , Transcortin/chemistry , Vasoconstriction/drug effects
2.
Annu Rev Pharmacol Toxicol ; 48: 79-106, 2008.
Article in English | MEDLINE | ID: mdl-17705685

ABSTRACT

Pharmacological doses of nicotinic acid induce a profound change in the plasma levels of various lipids and lipoproteins. The ability of nicotinic acid to strongly increase the plasma concentration of high-density lipoprotein (HDL) cholesterol has in recent years led to an increased interest in the pharmacological potential of nicotinic acid. There is increasing evidence that nicotinic acid alone or in addition to LDL cholesterol-lowering drugs can reduce the progression of atherosclerosis and reduce the risk of cardiovascular events. The clinical use of nicotinic acid is, however, hindered by harmless but unpleasant side effects, especially by a strong cutaneous vasodilation called flushing. The recent discovery of the G protein-coupled receptor GPR109A (HM74A or PUMA-G) as a receptor for nicotinic acid has allowed for better understanding of the mechanisms underlying the metabolic and vascular effects of nicotinic acid. On the basis of recent progress in understanding the pharmacological effects of nicotinic acid, new strategies are in development to better exploit the pharmacological potential of nicotinic acid. New drugs acting via the nicotinic acid receptor or related receptors, as well as new co-medications that suppress unwanted effects of nicotinic acid, will most likely be introduced as new therapeutic options in the treatment of dyslipidemia and the prevention of cardiovascular diseases.


Subject(s)
Hypolipidemic Agents/pharmacology , Niacin/pharmacology , Receptors, Nicotinic/drug effects , Animals , Atherosclerosis/prevention & control , Cardiovascular Diseases/prevention & control , Clinical Trials as Topic , Humans , Hyperlipidemias/drug therapy , Hypolipidemic Agents/adverse effects , Niacin/adverse effects , Receptors, Nicotinic/metabolism
3.
Structure ; 13(7): 1069-80, 2005 Jul.
Article in English | MEDLINE | ID: mdl-16004878

ABSTRACT

Heterotrimeric G proteins are molecular switches that regulate numerous signaling pathways involved in cellular physiology. This characteristic is achieved by the adoption of two principal states: an inactive, GDP bound state and an active, GTP bound state. Under basal conditions, G proteins exist in the inactive, GDP bound state; thus, nucleotide exchange is crucial to the onset of signaling. Despite our understanding of G protein signaling pathways, the mechanism of nucleotide exchange remains elusive. We employed phage display technology to identify nucleotide state-dependent Galpha binding peptides. Herein, we report a GDP-selective Galpha binding peptide, KB-752, that enhances spontaneous nucleotide exchange of Galpha(i) subunits. Structural determination of the Galpha(i1)/peptide complex reveals unique changes in the Galpha switch regions predicted to enhance nucleotide exchange by creating a GDP dissociation route. Our results cast light onto a potential mechanism by which Galpha subunits adopt a conformation suitable for nucleotide exchange.


Subject(s)
GTP-Binding Protein alpha Subunits, Gi-Go/chemistry , Amino Acid Motifs , Amino Acid Sequence , Biosensing Techniques , Buffers , Catalytic Domain , Crystallography, X-Ray , Dimerization , Electrons , Enzyme-Linked Immunosorbent Assay , Guanine Nucleotide Exchange Factors/chemistry , Guanine Nucleotides/chemistry , Kinetics , Magnesium/chemistry , Models, Molecular , Molecular Sequence Data , Nucleotides/chemistry , Peptide Library , Peptides/chemistry , Protein Binding , Protein Conformation , Protein Structure, Tertiary , Sequence Homology, Amino Acid , Signal Transduction , Stereoisomerism , Surface Plasmon Resonance , Time Factors
4.
Bioorg Med Chem ; 12(9): 2357-67, 2004 May 01.
Article in English | MEDLINE | ID: mdl-15080933

ABSTRACT

The [3.3.1]-bicyclic amine, exo-8-benzyloxymethyl-3-ethoxycarbonyl-4-hydroxy-1-azabicyclo[3.3.1]non-3-ene (1), has been shown to be a potent competitive antagonist against the hM(1)-hM(5) muscarinic receptors. This heterocyclic system has not been extensively evaluated despite the notable activities reported for other bicyclic amines. Synthetic strategies permitted the selective alteration of five structural sites in 1. Pharmacological evaluation demonstrated that modification of either the C(3) alkoxycarbonyl or the C(4) enol units in 1 gave compounds with high affinity for the hM(1)-hM(5) muscarinic receptors with selectivity for the hM(2) receptor.


Subject(s)
Aza Compounds/metabolism , Bridged Bicyclo Compounds/metabolism , Muscarinic Antagonists/metabolism , Animals , Aza Compounds/chemistry , Bridged Bicyclo Compounds/chemistry , COS Cells , Ligands , Muscarinic Antagonists/chemistry , Spectrum Analysis
5.
Purinergic Signal ; 1(1): 43-9, 2004 Dec.
Article in English | MEDLINE | ID: mdl-18404399

ABSTRACT

P2Y receptors are G protein coupled receptors that respond to extracellular nucleotides to promote a multitude of signaling events. Our laboratory has purified several P2Y receptors with the goal of providing molecular insight into their: (1) ligand binding properties, (2) G protein signaling selectivities, and (3) regulation by RGS proteins and other signaling cohorts. The human P2Y(1) receptor and the human P2Y(12) receptor, both of which are intimately involved in ADP-mediated platelet aggregation, were purified to near homogeneity and studied in detail. After high-level expression from recombinant baculovirus infection of Sf9 insect cells, approximately 50% of the receptors were successfully extracted with digitonin. Purification of nearly homogeneous epitope-tagged P2Y receptor was achieved using metal-affinity chromatography followed by other traditional chromatographic steps. Yields of purified P2Y receptors range from 10 to 100 mug/l of infected cells. Once purified, the receptors were reconstituted in model lipid vesicles along with their cognate G proteins to assess receptor function. Agonist-promoted increases in steady-state GTPase assays demonstrated the functional activity of the reconstituted purified receptor. We have utilized this reconstitution system to assess the action of various nucleotide agonists and antagonists, the relative G protein selectivity, and the influence of other proteins, such as phospholipase C, on P2Y receptor-promoted signaling. Furthermore, we have identified the RGS expression profile of platelets and have begun to assess the action of these RGS proteins in a reconstituted P2Y receptor/G protein platelet model.

6.
Mol Pharmacol ; 64(5): 1210-6, 2003 Nov.
Article in English | MEDLINE | ID: mdl-14573771

ABSTRACT

The human P2Y12 receptor (P2Y12-R) is a member of the G protein coupled P2Y receptor family, which is intimately involved in platelet physiology. We describe here the purification and functional characterization of recombinant P2Y12-R after high-level expression from a baculovirus in Sf9 insect cells. Purified P2Y12-R, Gbeta1gamma2, and various Galpha-subunits were reconstituted in lipid vesicles, and steady-state GTPase activity was quantified. GTP hydrolysis in proteoliposomes formed with purified P2Y12-R and Galphai2beta1gamma2 was stimulated by addition of either 2-methylthio-ADP (2MeSADP) or RGS4 and was markedly enhanced by their combined presence. 2MeSADP was the most potent agonist (EC50 = 80 nM) examined, whereas ADP, the cognate agonist of the P2Y12-R, was 3 orders of magnitude less potent. ATP had no effect alone but inhibited the action of 2MeSADP; therefore, ATP is a relatively low-affinity antagonist of the P2Y12-R. The G protein selectivity of the P2Y12-R was examined by reconstitution with various G protein alpha-subunits in heterotrimeric form with Gbeta1gamma2. The most robust coupling of the P2Y12-R was to Galphai2, but effective coupling also occurred to Galphai1 and Galphai3. In contrast, little or no coupling occurred to Galphao or Galphaq. These results illustrate that the signaling properties of the P2Y12-R can be studied as a purified protein under conditions that circumvent the complications that occur in vivo because of nucleotide metabolism and interconversion as well as nucleotide release.


Subject(s)
Membrane Proteins , Receptors, Purinergic P2/isolation & purification , Adenosine Diphosphate/metabolism , Animals , COS Cells , Chlorocebus aethiops , Humans , Receptors, Purinergic P2/physiology , Receptors, Purinergic P2Y12 , Transfection
7.
J Med Chem ; 46(11): 2216-26, 2003 May 22.
Article in English | MEDLINE | ID: mdl-12747793

ABSTRACT

Expedient syntheses of C(8) substituted 1-azabicyclo[3.3.1]non-3-enes and C(8) substituted 1-azabicyclo[3.3.1]nonan-4-ones are reported to begin with 2,5-disubstituted pyridines. Catalytic reduction of the pyridine to the piperidine followed by treatment with ethyl acrylate and Dieckmann cyclization gave diastereomeric mixtures of C(8) substituted 3-ethoxycarbonyl-4-hydroxy-1-azabicyclo[3.3.1]non-3-enes, which were separable by chromatography. We found that the catalytic reduction (PtO2, H2) procedure provided the cis-substituted piperidine but that pyridine reduction was accompanied by competitive cleavage of the C(2) pyridyl substituent. Accordingly, an alternative route was devised that afforded a diastereomeric mixture of the cis- and trans-2,5-disubstituted piperidine. Treatment of the substituted pyridine with m-CPBA gave the pyridine N-oxide, which was reduced to the piperidine by sequential reduction with ammonium formate in the presence of Pd-C followed by NaBH3CN. Addition of ethyl acrylate completed the synthesis of the substituted piperidine. The overall four-step reaction gave higher yields (57%) than the two-step procedure (13%) with little cleavage of the C(2) pyridyl substituent. Acid decarboxylation of the bicyclo[3.3.1]non-3-enes provided the C(8) substituted 1-azabicyclo[3.3.1]nonan-4-ones. Structural studies revealed diagnostic 13C NMR signals that permit assignment of the orientation of the C(8) substituent. Pharmacological investigations documented that 3-ethoxycarbonyl-4-hydroxy-1-azabicyclo[3.3.1]non-3-enes efficiently bind to the human M1-M5 muscarinic receptors and function as antagonists. We observed that exo-8-benzyloxymethyl-3-ethoxycarbonyl-4-hydroxy-1-azabicyclo[3.3.1]non-3-ene (3) displayed the highest affinity, exhibiting Ki values at all five muscarinic receptors that were approximately 10-50 times lower than carbachol and approximately 30-230 times lower than arecoline. Receptor selectivity was observed for 3. Compound 3 contained two different pharmacophores found in many muscarinic receptor ligands, and preliminary findings indicated the importance of both structural elements for maximal activity. Compound 3 serves as a novel lead compound for further drug development.


Subject(s)
Bridged Bicyclo Compounds, Heterocyclic/chemical synthesis , Muscarinic Antagonists/chemical synthesis , Animals , Binding, Competitive , Bridged Bicyclo Compounds, Heterocyclic/chemistry , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Cell Line , Crystallography, X-Ray , Humans , Inositol Phosphates/biosynthesis , Magnetic Resonance Spectroscopy , Membranes , Muscarinic Antagonists/chemistry , Muscarinic Antagonists/pharmacology , Radioligand Assay , Stereoisomerism , Structure-Activity Relationship
8.
J Biol Chem ; 278(12): 10087-93, 2003 Mar 21.
Article in English | MEDLINE | ID: mdl-12531899

ABSTRACT

Regulator of G-protein signaling (RGS) proteins are GTPase activating proteins (GAPs) of heterotrimeric G-proteins that alter the amplitude and kinetics of receptor-promoted signaling. In this study we defined the G-protein alpha-subunit selectivity of purified Sf9 cell-derived R7 proteins, a subfamily of RGS proteins (RGS6, -7, -9, and -11) containing a Ggamma-like (GGL) domain that mediates dimeric interaction with Gbeta(5). Gbeta(5)/R7 dimers stimulated steady state GTPase activity of Galpha-subunits of the G(i) family, but not of Galpha(q) or Galpha(11), when added to proteoliposomes containing M2 or M1 muscarinic receptor-coupled G-protein heterotrimers. Concentration effect curves of the Gbeta(5)/R7 proteins revealed differences in potencies and efficacies toward Galpha-subunits of the G(i) family. Although all four Gbeta(5)/R7 proteins exhibited similar potencies toward Galpha(o), Gbeta(5)/RGS9 and Gbeta(5)/RGS11 were more potent GAPs of Galpha(i1), Galpha(i2), and Galpha(i3) than were Gbeta(5)/RGS6 and Gbeta(5)/RGS7. The maximal GAP activity exhibited by Gbeta(5)/RGS11 was 2- to 4-fold higher than that of Gbeta(5)/RGS7 and Gbeta(5)/RGS9, with Gbeta(5)/RGS6 exhibiting an intermediate maximal GAP activity. Moreover, the less efficacious Gbeta(5)/RGS7 and Gbeta(5)/RGS9 inhibited Gbeta(5)/RGS11-stimulated GTPase activity of Galpha(o). Therefore, R7 family RGS proteins are G(i) family-selective GAPs with potentially important differences in activities.


Subject(s)
GTP-Binding Protein alpha Subunits, Gi-Go/metabolism , GTP-Binding Proteins/physiology , GTPase-Activating Proteins/physiology , RGS Proteins/physiology , Animals , Guanosine Triphosphate/metabolism , Heterotrimeric GTP-Binding Proteins/chemistry , Heterotrimeric GTP-Binding Proteins/physiology , Hydrolysis , Spodoptera
SELECTION OF CITATIONS
SEARCH DETAIL
...