Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Manage ; 237: 617-628, 2019 May 01.
Article in English | MEDLINE | ID: mdl-30831431

ABSTRACT

A field pilot test was conducted using an emulsified vegetable oil (EVO) and colloidal magnesium hydroxide [Mg(OH)2] formulation to enhance reductive dechlorination of dense non-aqueous phase liquid (DNAPL) trichloroethene (TCE) in an acidic (pH < 4), heterogeneous aquifer. The field test consisted of i) a single well injection test to evaluate Mg(OH)2 distribution and ii) installation of two EVO-Mg(OH)2 permeable reactive barriers (PRBs; PRB-1 & PRB-2) at varying distances downgradient of the DNAPL source area. Distribution of Mg(OH)2 was observed up to 2.3 m away from the injection point within a permeable coarse sand layer; however, Mg(OH)2 transport in the overlying clayey-silty sand was minimal. Downgradient of the PRBs, colloidal Mg(OH)2 increased the pH of the coarse sand to levels appropriate for biological reductive dechlorination (pH >∼5); however, some settling of Mg(OH)2 in the injection wells generated persistent high pH (∼9-10) within the PRBs. A redesigned suspension of colloidal Mg(OH)2 was tested and proved to be more effective at raising aquifer pH without an excessive rise in pH within the PRBs. At PRB-1 (located closest to the DNAPL source area), limited TCE biodegradation was observed due to the influx of high TCE concentrations (up to 400 mg/L) and inhibition of dechlorinating bacteria. At PRB-2 (located 25 m downgradient of the DNAPL source area), TCE concentrations were much lower (13-26 mg/L) and production of cis-1,2-dichloroethene (cDCE) and some vinyl chloride (VC) was observed. Subsequent bioaugmentation with a commercial dechlorinating culture at PRB-2 improved conversion of cDCE to VC and ethene at downgradient monitoring wells over the duration of the study. These results emphasize the importance of PRB location (relative to the DNAPL source), base selection for pH adjustment, source strength, and local heterogeneities for the design and long-term performance of ERD in acidic DNAPL-impacted aquifers.


Subject(s)
Groundwater , Trichloroethylene , Water Pollutants, Chemical , Biodegradation, Environmental , Halogenation
2.
Appl Environ Microbiol ; 77(12): 4119-25, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21531837

ABSTRACT

Proteolytic cleavage activation of influenza virus hemagglutinin (HA0) is required for cell entry via receptor-mediated endocytosis. Despite numerous studies describing bacterial protease-mediated influenza A viral activation in mammals, very little is known about the role of intestinal bacterial flora of birds in hemagglutinin cleavage/activation. Therefore, the cloaca of wild waterfowl was examined for (i) representative bacterial types and (ii) their ability to cleave in a "trypsin-like" manner the precursor viral hemagglutinin molecule (HA0). Using radiolabeled HA0, bacterial secretion-mediated trypsin-like conversion of HA0 to HA1 and HA2 peptide products was observed to various degrees in 42 of 44 bacterial isolates suggestive of influenza virus activation in the cloaca of wild waterfowl. However, treatment of uncleaved virus with all bacterial isolates gave rise to substantially reduced emergent virus progeny compared with what was expected. Examination of two isolates exhibiting pronounced trypsin-like conversion of HA0 to HA1 and HA2 peptide products and low infectivity revealed lipase activity to be present. Because influenza virus possesses a complex lipid envelope, the presence of lipid hydrolase activity could in part account for the observed less-than-expected level of viable progeny. A thorough characterization of respective isolate protease HA0 hydrolysis products as well as other resident activities (i.e., lipase) is ongoing such that the role of these respective contributors in virus activation/inactivation can be firmly established.


Subject(s)
Bacteria/metabolism , Cloaca/microbiology , Ducks/microbiology , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Orthomyxoviridae/pathogenicity , Virulence Factors/metabolism , Animals , Bacteria/enzymology , Bacterial Proteins/metabolism , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Lipase/metabolism , Molecular Sequence Data , Sequence Analysis, DNA
3.
Environ Pollut ; 158(12): 3462-71, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20828905

ABSTRACT

Organic chemicals have been detected at trace concentrations in the freshwater environment for decades. Though the term trace pollutant indicates low concentrations normally in the nanogram or microgram per liter range, many of these pollutants can exceed an acceptable daily intake (ADI) for humans. Trace pollutants referred to as emerging contaminants (ECs) have recently been detected in the freshwater environment and may have adverse human health effects. Analytical techniques continue to improve; therefore, the number and frequency of detections of ECs are increasing. It is difficult for regulators to restrict use of pollutants that are a human health hazard; scientists to improve treatment techniques for higher priority pollutants; and the public to modify consumption patterns due to the vast number of ECs and the breadth of literature on the occurrence, use, and toxicity. Hence, this paper examines literature containing occurrence and toxicity data for three broad classes of trace pollutants and ECs (industrials, pesticides, and pharmaceuticals and personal care products (PPCPs)), and assesses the relevance of 71 individual compounds. The evaluation indicates that widely used industrials (BPF) and PPCPs (AHTN, HHCB, ibuprofen, and estriol) occur frequently in samples from the freshwater environment but toxicity data were not available; thus, it is important to establish their ADI. Other widely used industrials (BDE-47, BDE-99) and pesticides (benomyl, carbendazim, aldrin, endrin, ethion, malathion, biphenthrin, and cypermethrin) have established ADI values but occurrence in the freshwater environment was not well documented. The highest priority pollutants for regulation and treatment should include industrials (PFOA, PFOS and DEHP), pesticides (diazinon, methoxychlor, and dieldrin), and PPCPs (EE2, carbamazepine, ßE2, DEET, triclosan, acetaminophen, and E1) because they occur frequently in the freshwater environment and pose a human health hazard at environmental concentrations.


Subject(s)
Environmental Monitoring/legislation & jurisprudence , Fresh Water/analysis , Organic Chemicals/toxicity , Pesticides/toxicity , Water Pollutants, Chemical/toxicity , Guidelines as Topic , Hazardous Substances/analysis , Hazardous Substances/toxicity , Humans , Industrial Waste , Organic Chemicals/analysis , Pesticides/analysis , Water Pollutants, Chemical/analysis
4.
Ground Water ; 42(3): 374-83, 2004.
Article in English | MEDLINE | ID: mdl-15161154

ABSTRACT

Biotracer tests have been proposed as a means by which to characterize the in situ biodegradation potential for field-scale systems. In this study, field experiments were conducted at two sites to evaluate the utility of the biotracer method for characterizing the spatial variability of microbial activity. The first site is a mixed waste-contaminated surficial aquifer in Utah, and the second site is a chlorinated solvent-contaminated regional aquifer in Tucson, Arizona. Mass recovery of the biotracer decreased approximately linearly with increasing residence time for the Tucson site. Similar behavior was observed at the Utah site, except in the region adjacent to the injection zone, where percent recoveries were much lower than those predicted using a correlation determined using data collected downgradient of the injection zone. First-order biodegradation rate coefficients obtained from model calibration of the tracer data varied between 0.2 and 0.5/day for the Tucson site. For the Utah site, the values varied between 0.1 and 0.6/day downgradient of the injection wells, and between 0.7 and 2.6/day near the injection wells. Considering the large range over which biodegradation rate coefficients can vary, the rate coefficient exhibited relatively minimal spatial variability (factor of 2.5) for the Tucson site. Conversely, the spatial variability of the rate coefficient was an order of magnitude greater for the Utah site. These differences in variability are consistent with conditions associated with the respective sites. For example, the greater microbial activity observed in the vicinity of the injection wells for the Utah site is consistent with the biomass distribution determined from analysis of core samples, which shows larger bacterial cell densities for the region near the injection wells. These results illustrate the utility of biotracer tests for in situ characterization of microbial activity (e.g., biodegradation potential), including evaluation of potential spatial variability.


Subject(s)
Biomarkers/analysis , Environmental Monitoring/methods , Water Microbiology , Water Pollutants/metabolism , Biodegradation, Environmental , Refuse Disposal , Reproducibility of Results
5.
Appl Environ Microbiol ; 70(1): 114-20, 2004 Jan.
Article in English | MEDLINE | ID: mdl-14711632

ABSTRACT

Herein we report the structure and selected properties of a new class of biosurfactants that we have named the flavolipids. The flavolipids exhibit a unique polar moiety that features citric acid and two cadaverine molecules. Flavolipids were produced by a soil isolate, Flavobacterium sp. strain MTN11 (accession number AY162137), during growth in mineral salts medium, with 2% glucose as the sole carbon and energy source. MTN11 produced a mixture of at least 37 flavolipids ranging from 584 to 686 in molecular weight (MW). The structure of the major component (23%; MW = 668) was determined to be 4-[[5-(7-methyl-(E)-2-octenoylhydroxyamino)pentyl]amino]-2-[2-[[5-(7-methyl-(E)-2-octenoylhydroxyamino)pentyl]amino]-2-oxoethyl]-2-hydroxy-4-oxobutanoic acid. The partially purified flavolipid mixture isolated from strain MTN11 exhibited a critical micelle concentration of 300 mg/liter and reduced surface tension to 26.0 mN/m, indicating strong surfactant activity. The flavolipid mixture was a strong and stable emulsifier even at concentrations as low as 19 mg/liter. It was also an effective solubilizing agent, and in a biodegradation study, it enhanced hexadecane mineralization by two isolates, MTN11 (100-fold) and Pseudomonas aeruginosa ATCC 9027 (2.5-fold), over an 8-day period. The flavolipid-cadmium stability constant was measured to be 3.61, which is comparable to that for organic ligands such as oxalic acid and acetic acid. In summary, the flavolipids represent a new class of biosurfactants that have potential for use in a variety of biotechnological and industrial applications.


Subject(s)
Flavobacterium/metabolism , Surface-Active Agents/chemistry , Surface-Active Agents/metabolism , Alkanes , Biodegradation, Environmental , Emulsifying Agents , Flavobacterium/growth & development , Lipoproteins/chemistry , Lipoproteins/metabolism , Magnetic Resonance Spectroscopy , Micelles , Solubility , Surface Tension , Surface-Active Agents/classification
6.
Environ Microbiol ; 5(10): 888-95, 2003 Oct.
Article in English | MEDLINE | ID: mdl-14510842

ABSTRACT

Widespread environmental contamination by polycyclic aromatic hydrocarbons (PAH) has led to increased interest in the use of natural attenuation as a clean-up strategy. However, few bioremediation studies have investigated the behaviour of the indigenous PAH-degrading community after long-term exposure to a PAH. In this study, a column packed with sandy loam soil was exposed to a solution saturated with phenanthrene ( approximately 1.2 mg l-1) for a 6-month period to examine the temporal response of the indigenous phenanthrene-degrading community. Initial soil, effluent, and final soil samples were collected and analysed for phenanthrene concentration and culturable phenanthrene degraders. Phenanthrene-degrading isolates were grouped by colony morphology. For each unique group, 16S rDNA polymerase chain reaction was performed, and then sequencing analysis was used to identify the isolate at the genus level. Twenty-five phenanthrene-degrading isolates, potentially representing 19 genera, were obtained from this analysis. Of these, eight genera have not been reported previously to degrade phenanthrene, including Afipia, Janthinobacterium, Leptothrix, Massilia, Methylobacterium, Rhizobium, Sinorhizobium and Thiobacillus. Results indicate that the dominant phenanthrene-degrading population changed over the course of this 6-month experiment. Specifically, the isolates obtained initially from the soil were not subsequently found in either effluent samples or the soil at the end of the experiment. Furthermore, several isolates that were found in the soil at the end of the experiment were not observed in the soil initially or in the effluent samples. This study confirms earlier findings indicating that a diverse community participates in phenanthrene degradation in the environment, and also suggests that the composition of this community is temporally variable.


Subject(s)
Bacteria/metabolism , Biodegradation, Environmental , Phenanthrenes/metabolism , Soil Microbiology , Soil , Bacteria/genetics , DNA, Ribosomal/analysis , Molecular Sequence Data , Oxygen/metabolism , Soil Pollutants/metabolism
7.
Appl Environ Microbiol ; 69(6): 3280-7, 2003 Jun.
Article in English | MEDLINE | ID: mdl-12788727

ABSTRACT

Biosurfactants are a unique class of compounds that have been shown to have a variety of potential applications in the remediation of organic- and metal-contaminated sites, in the enhanced transport of bacteria, in enhanced oil recovery, as cosmetic additives, and in biological control. However, little is known about the distribution of biosurfactant-producing bacteria in the environment. The goal of this study was to determine how common culturable surfactant-producing bacteria are in undisturbed and contaminated sites. A series of 20 contaminated (i.e., with metals and/or hydrocarbons) and undisturbed soils were collected and plated on R(2)A agar. The 1,305 colonies obtained were screened for biosurfactant production in mineral salts medium containing 2% glucose. Forty-five of the isolates were positive for biosurfactant production, representing most of the soils tested. The 45 isolates were grouped by using repetitive extragenic palindromic (REP)-PCR analysis, which yielded 16 unique isolates. Phylogenetic relationships were determined by comparing the 16S rRNA gene sequence of each unique isolate with known sequences, revealing one new biosurfactant-producing microbe, a Flavobacterium sp. Sequencing results indicated only 10 unique isolates (in comparison to the REP analysis, which indicated 16 unique isolates). Surface tension results demonstrated that isolates that were similar according to sequence analysis but unique according to REP analysis in fact produced different surfactant mixtures under identical growth conditions. These results suggest that the 16S rRNA gene database commonly used for determining phylogenetic relationships may miss diversity in microbial products (e.g., biosurfactants and antibiotics) that are made by closely related isolates. In summary, biosurfactant-producing microorganisms were found in most soils even by using a relatively limited screening assay. Distribution was dependent on soil conditions, with gram-positive biosurfactant-producing isolates tending to be from heavy metal-contaminated or uncontaminated soils and gram-negative isolates tending to be from hydrocarbon-contaminated or cocontaminated soils.


Subject(s)
Bacteria/classification , Desert Climate , Soil Microbiology , Soil Pollutants , Surface-Active Agents/metabolism , Arizona , Bacteria/genetics , Bacteria/growth & development , Bacteria/isolation & purification , Bacteria/metabolism , Biodegradation, Environmental , Culture Media , DNA, Ribosomal/analysis , Genes, rRNA , Hydrocarbons , Metals, Heavy , Phylogeny , Polymerase Chain Reaction/methods , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...