Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 15(17): 20946-20957, 2023 May 03.
Article in English | MEDLINE | ID: mdl-37078742

ABSTRACT

In this work, we report a method for producing a thin (<50 µm), mechanically robust, sodium-ion conducting composite solid electrolyte (CSE) by infiltrating the monomers of polyethylene glycol diacrylate (PEGDA) and polyethylene glycol (PEG) and either NaClO4 or NaFSI salt into a silica-based glass-fiber matrix, followed by an UV-initiated in situ polymerization. The glass fiber matrix provided mechanical strength to the CSE and enabled a robust, self-supporting separator. This strategy enabled the development of CSEs with high loadings of PEG as a plasticizer to enhance the ionic conductivity. The fabrication of these CSEs was done under ambient conditions, which was highly scalable and can be easily implemented in roll-to-roll processing. While NaClO4 was found to be unstable with the sodium-metal anode, the use of a NaFSI salt was found to promote stable stripping and plating in a symmetric cell, reaching current densities of as high as 0.67 mA cm-2 at 60 °C. The PEGDA + PEG + NaFSI separators were then used to form solid-state full cells with a cobalt-free, low-nickel layered Na2/3Ni1/3Mn2/3O2 cathode and a sodium-metal anode, achieving a full capacity utilization exhibiting 70% capacity retention after 50 cycles at a cycling rate of C/5 at 60 °C.

2.
Adv Colloid Interface Sci ; 275: 102061, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31767119

ABSTRACT

Biosurfactants comprise a wide array of amphiphilic molecules synthesized by plants, animals, and microbes. The synthesis route dictates their molecular characteristics, leading to broad structural diversity and ensuing functional properties. We focus here on low molecular weight (LMW) and high molecular weight (HMW) biosurfactants of microbial origin. These are environmentally safe and biodegradable, making them attractive candidates for applications spanning cosmetics to oil recovery. Biosurfactants spontaneously adsorb at various interfaces and self-assemble in aqueous solution, resulting in useful physicochemical properties such as decreased surface and interfacial tension, low critical micellization concentrations (CMCs), and ability to solubilize hydrophobic compounds. This review highlights the relationships between biosurfactant molecular composition, structure, and their interfacial behavior. It also describes how environmental factors such as temperature, pH, and ionic strength can impact physicochemical properties and self-assembly behavior of biosurfactant-containing solutions and dispersions. Comparison between biosurfactants and their synthetic counterparts are drawn to illustrate differences in their structure-property relationships and potential benefits. Knowledge of biosurfactant properties organized along these lines is useful for those seeking to formulate so-called green or natural products with novel and useful properties.


Subject(s)
Biological Products/chemistry , Surface-Active Agents/chemistry , Biological Products/chemical synthesis , Chemistry, Physical , Particle Size , Surface Properties , Surface-Active Agents/chemical synthesis
3.
Expert Opin Drug Deliv ; 15(11): 1085-1104, 2018 11.
Article in English | MEDLINE | ID: mdl-30259762

ABSTRACT

INTRODUCTION: Nanostructured delivery vehicles can address key challenges facing drug delivery, including the lipophilic nature of therapeutic compounds and their effective transport through the body. Amphiphilic block copolymers that self-assemble offer advantages compared with homopolymer-, lipid-, and protein-based delivery vehicles. Poly(ethylene oxide)-poly(propylene oxide) amphiphilic block copolymers (Poloxamers) serve well as pharmaceutical excipients because of their highly tunable association properties, low toxicity, and ability to functionalize. The formulation nanostructure underpins performance across various administration routes and diseases, but is strongly dependent on the amphiphile, drug, and environment (temperature, concentration, and types of additives), thus demanding further elucidation. AREAS COVERED: The phase behavior of Poloxamers in aqueous solution is presented first, to inform an overview of drug encapsulation processes. The formulation composition and preparation method are centrally important to the nanostructure obtained. Several self-assembled structures are discussed which present advantages for particular administration routes: transdermal, ophthalmic, oral, nasal, and subcutaneous. Many diseases are treatable through these routes, e.g., inflammation, diabetes, hypertension, and cancer. EXPERT OPINION: The exceptional ability to tune amphiphilic block copolymer nanostructure (micelles, hydrogels, lyotropic liquid crystals, etc.) renders them a powerful tool in the formulation of drug delivery systems, offering multiple processing options and physical states to accommodate diverse drugs and administration pathways.


Subject(s)
Drug Delivery Systems/methods , Poloxamer/chemistry , Polymers/chemistry , Animals , Humans , Hydrogels , Micelles , Temperature
4.
J Funct Biomater ; 9(1)2018 Jan 18.
Article in English | MEDLINE | ID: mdl-29346330

ABSTRACT

Poloxamers, also known as Pluronics®, are block copolymers of poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO), which have an amphiphilic character and useful association and adsorption properties emanating from this. Poloxamers find use in many applications that require solubilization or stabilization of compounds and also have notable physiological properties, including low toxicity. Accordingly, poloxamers serve well as excipients for pharmaceuticals. Current challenges facing nanomedicine revolve around the transport of typically water-insoluble drugs throughout the body, followed by targeted delivery. Judicious design of drug delivery systems leads to improved bioavailability, patient compliance and therapeutic outcomes. The rich phase behavior (micelles, hydrogels, lyotropic liquid crystals, etc.) of poloxamers makes them amenable to multiple types of processing and various product forms. In this review, we first present the general solution behavior of poloxamers, focusing on their self-assembly properties. This is followed by a discussion of how the self-assembly properties of poloxamers can be leveraged to encapsulate drugs using an array of processing techniques including direct solubilization, solvent displacement methods, emulsification and preparation of kinetically-frozen nanoparticles. Finally, we conclude with a summary and perspective.

5.
Adv Colloid Interface Sci ; 244: 132-163, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28069108

ABSTRACT

The adsorption of amphiphilic molecules of varying size on solid-liquid interfaces modulates the properties of colloidal systems. Nonionic, poly(ethylene oxide) (PEO)-based amphiphilic molecules are particularly useful because of their graded hydrophobic-hydrophilic nature, which allows for adsorption on a wide array of solid surfaces. Their adsorption also results in other useful properties, such as responsiveness to external stimuli and solubilization of hydrophobic compounds. This review focuses on the adsorption properties of PEO-based amphiphiles, beginning with a discussion of fundamental concepts pertaining to the adsorption of macromolecules on solid-liquid interfaces, and more specifically the adsorption of PEO homopolymers. The main portion of the review highlights studies on factors affecting the adsorption and surface self-assembly of PEO-PPO-PEO block copolymers, where PPO is poly(propylene oxide). Block copolymers of this type are commercially available and of interest in several fields, due to their low toxicity and compatibility in aqueous systems. Examples of applications relevant to the interfacial behavior of PEO-PPO-PEO block copolymers are paints and coatings, detergents, filtration, and drug delivery. The methods discussed herein for manipulating the adsorption properties of PEO-PPO-PEO are emphasized for their ability to shed light on molecular interactions at interfaces. Knowledge of these interactions guides the formulation of novel materials with useful mesoscale organization and micro- and macrophase properties.

6.
J Colloid Interface Sci ; 397: 1-8, 2013 May 01.
Article in English | MEDLINE | ID: mdl-23453483

ABSTRACT

We investigate the role of three polar organic solvents (dimethyl formamide (DMF), dimethyl sulfoxide (DMSO), and glycerol) on the interfacial behavior of Pluronic P105 poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) block copolymers on protonated silica nanoparticles in an aqueous dispersion. The polymer adsorption and self-assembly have been assessed from critical surface micelle concentration (csmc, measured by pyrene fluorescence spectroscopy) and adsorbed layer thickness (measured by capillary viscometry) data. Above its csmc, PEO-PPO-PEO block copolymers form hydrophobic domains on the nanoparticle surface. Below a critical concentration in water (known as critical displacer concentration, cdc), organic solvents act as displacers (molecules that can displace adsorbed polymer from a solid surface). The critical displacer concentration is obtained from the csmc and the polymer adsorbed layer thickness data. The cdc is found to be dependent on both the amount of nanoparticles present in the system as well as the nature of the displacer. Below the cdc, the csmc increases and the adsorbed polymer layer thickness decreases with increasing organic solvent concentration. Interfacial free energy calculations suggest that DMF, DMSO, and glycerol can adsorb onto the silica particles by displacing adsorbed PEO. These calculations are consistent with the experimental results in that, as a displacer, glycerol is the most effective and DMF is the least effective. Above the cdc, the influence of glycerol or DMSO on csmc is opposite to that of DMF which is attributed to the cosolvent effect.

SELECTION OF CITATIONS
SEARCH DETAIL
...