Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Vis Exp ; (111)2016 05 28.
Article in English | MEDLINE | ID: mdl-27285177

ABSTRACT

Extended defects such as dislocations and grain boundaries have a strong influence on the performance of microelectronic devices and on other applications of semiconductor materials. However, it is still under debate how the defect structure determines the band structure, and therefore, the recombination behavior of electron-hole pairs responsible for the optical and electrical properties of the extended defects. The present paper is a survey of procedures for the spatially resolved investigation of structural and of physical properties of extended defects in semiconductor materials with a scanning electron microscope (SEM). Representative examples are given for crystalline silicon. The luminescence behavior of extended defects can be investigated by cathodoluminescence (CL) measurements. They are particularly valuable because spectrally and spatially resolved information can be obtained simultaneously. For silicon, with an indirect electronic band structure, CL measurements should be carried out at low temperatures down to 5 K due to the low fraction of radiative recombination processes in comparison to non-radiative transitions at room temperature. For the study of the electrical properties of extended defects, the electron beam induced current (EBIC) technique can be applied. The EBIC image reflects the local distribution of defects due to the increased charge-carrier recombination in their vicinity. The procedure for EBIC investigations is described for measurements at room temperature and at low temperatures. Internal strain fields arising from extended defects can be determined quantitatively by cross-correlation electron backscatter diffraction (ccEBSD). This method is challenging because of the necessary preparation of the sample surface and because of the quality of the diffraction patterns which are recorded during the mapping of the sample. The spatial resolution of the three experimental techniques is compared.


Subject(s)
Microscopy, Electron, Scanning/methods , Semiconductors , Materials Testing , Silicon/chemistry , X-Ray Diffraction
2.
PLoS One ; 5(9): e12929, 2010 Sep 23.
Article in English | MEDLINE | ID: mdl-20886068

ABSTRACT

The molecular basis for the interaction of insulin granules with the cortical cytoskeleton of pancreatic ß-cells remains unknown. We have proposed that binding of the granule protein ICA512 to the PDZ domain of ß2-syntrophin anchors granules to actin filaments and that the phosphorylation/dephosphorylation of ß2-syntrophin regulates this association. Here we tested this hypothesis by analyzing INS-1 cells expressing GFP-ß2-syntrophin through the combined use of biochemical approaches, imaging studies by confocal and total internal reflection fluorescence microscopy as well as electron microscopy. Our results support the notion that ß2-syntrophin restrains the mobility of cortical granules in insulinoma INS-1 cells, thereby reducing insulin secretion and increasing insulin stores in resting cells, while increasing insulin release upon stimulation. Using mass spectrometry, in vitro phosphorylation assays and ß2-syntrophin phosphomutants we found that phosphorylation of ß2-syntrophin on S75 near the PDZ domain decreases its binding to ICA512 and correlates with increased granule motility, while phosphorylation of S90 has opposite effects. We further show that Cdk5, which regulates insulin secretion, phosphorylates S75. These findings provide mechanistic insight into how stimulation displaces insulin granules from cortical actin, thus promoting their motility and exocytosis.


Subject(s)
Cyclin-Dependent Kinase 5/metabolism , Dystrophin-Associated Proteins/metabolism , Insulin/metabolism , Secretory Vesicles/metabolism , Animals , Biological Transport , Cell Line, Tumor , Cyclin-Dependent Kinase 5/genetics , Dystrophin-Associated Proteins/chemistry , Dystrophin-Associated Proteins/genetics , Female , Insulin Secretion , Insulin-Secreting Cells/chemistry , Insulin-Secreting Cells/metabolism , Islets of Langerhans/chemistry , Islets of Langerhans/metabolism , Phosphorylation , Protein Structure, Tertiary , Rats , Rats, Wistar , Secretory Vesicles/chemistry , Secretory Vesicles/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...