Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Biomater Sci Eng ; 9(8): 4646-4653, 2023 08 14.
Article in English | MEDLINE | ID: mdl-37526989

ABSTRACT

A novel composite based on biocompatible hydroxyapatite (HA) nanoparticles and Cu-HKUST-1 (Cu-HKUST-1@HA) has been prepared following a layer-by-layer strategy. Cu-HKUST-1 was carefully selected from a group of four Cu-based metal-organic frameworks as the material with the most promising antimicrobial activity. The formation of a colloidal Cu-HKUST-1 layer on HA nanoparticles was confirmed by various techniques, e.g., infrared spectroscopy, powder X-ray diffraction, N2 sorption, transmission electron microscopy imaging, electron paramagnetic resonance, and X-ray absorption spectroscopy. Importantly, such a Cu-HKUST-1 layer significantly improved the nanomechanical properties of the composite, with Young's modulus equal to that of human cortical bone (13.76 GPa). At the same time, Cu-HKUST-1@HA has maintained the negative zeta potential (-16.3 mV in pH 7.4) and revealed biocompatibility toward human dermal fibroblasts up to a concentration of 1000 µg/mL, without inducing ex vivo hemolysis. Chemical stability studies of the composite over 21 days in a buffer-simulated physiological fluid allowed a detailed understanding of the transformations that the Cu-HKUST-1@HA undergoes over time. Finally, it has been confirmed that the Cu-HKUST-1 layer provides antibacterial properties to HA, and the synergism reached in this way makes it promising for bone tissue regeneration.


Subject(s)
Durapatite , Metal-Organic Frameworks , Humans , Durapatite/pharmacology , Durapatite/chemistry , Metal-Organic Frameworks/chemistry , Bone and Bones , Bone Regeneration
2.
Nanomaterials (Basel) ; 12(24)2022 Dec 18.
Article in English | MEDLINE | ID: mdl-36558333

ABSTRACT

Ascorbic acid (AA) is an important biomolecule, the deficiency or maladjustment of which is associated with the symptoms of many diseases (e.g., cardiovascular disease or cancer). Therefore, there is a need to develop a fluorescent probe capable of detecting AA in aqueous media. Here, we report the synthesis, structural, and spectroscopic characterization (by means of, e.g., XRD, XPS, IR and Raman spectroscopy, TG, SEM, and EDS analyses), as well as the photoluminescent properties of a metal-organic framework (MOF) based on Cu2+ and Eu3+ ions. The ion-exchange process of the extraframework cation in anionic Cu-based MOF is proposed as an appropriate strategy to obtain a new material with a nondisturbed structure and a sensitivity to interaction with AA. Accordingly, a novel Eu[Cu3(µ3-OH)(µ3-4-carboxypyrazolato)3] compound for the selective optical detection of AA with a short detection time of 5 min is described.

3.
Nanoscale ; 14(14): 5514-5528, 2022 Apr 07.
Article in English | MEDLINE | ID: mdl-35343556

ABSTRACT

A highly bioactive glass solvBG76 in a binary system 76SiO2-24CaO (wt%) was prepared following a solvothermal path of the synthesis. The facile synthesis, in terms of the steps and reagents needed, enabled the achievement of a mesoporous material. Many factors such as nano-size (<50 nm), different morphology (non-spherical), use of an unconventional network modifier (calcium hydroxide) during the synthesis, a structure free of crystalline impurities, and textural properties greatly enhanced the kinetic deposition process of hydroxyapatite (HA) when contacting with physiological fluids. The formation of a HA layer on the glass was analyzed by various techniques, namely XRD, IR-ATR, Raman, XPS, EDS analyses, SEM, and HR-TEM imaging. The results obtained were compared to the 45S5 glass tested as a reference biomaterial as well as 70S30C-a glass with similar size and composition to reported solvBG76 but obtained by the conventional sol-gel method. For the first time, superior apatite-mineralization ability in less than 1 h in a physiological-like buffer was achieved. This unique bioactivity is accompanied by biocompatibility and hemocompatibility, which was indicated by a set of various assays in human dermal fibroblasts and MC3T3 mouse osteoblast precursor cells, as well as hemolytic activity determination.


Subject(s)
Durapatite , Glass , Animals , Apatites , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Durapatite/chemistry , Glass/chemistry , Mice
4.
Materials (Basel) ; 14(11)2021 May 22.
Article in English | MEDLINE | ID: mdl-34067244

ABSTRACT

This work investigates the sorption properties of poly(divinylbenzene) modified in the Diels-Alder reaction towards persistent and mobile metabolites of terbuthylazine. The batch experiments were carried out to examine the efficiency of desethyl-terbuthylazine and 2-hydroxy-terbuthylazine adsorption on the specific adsorbent and the impact of different factors on the adsorption process. Results fit well to a pseudo-second order kinetic model. It was confirmed that hydrogen bonds play an important role in the studied systems. Five times greater sorption of 2-hydroxy-terbuthylazine than desethyl-terbuthylazine was observed. The molecular structures of both metabolites exhibit complementarity to the arrangement of functional groups in the polymer but the differences in the physicochemical properties of the desethyl derivative make it a highly mobile compound with higher affinity to the aqueous phase. The equilibrium data in the batch study fit the Freundlich isotherm for 2-hydroxy-terbuthylazine, and for desethyl-terbuthylazine the Temkin and Dubinin-Radushkevich models were better. The adsorption capacities obtained under dynamic conditions were comparable with batch results. For column adsorption modeling the Bohart-Adams, Wolborska, Thomas and Yoon-Nelson models were used. The proposed microspheres can be reused easily with no significant decrease in adsorption capacity by using ethanol as eluent in the desorption.

SELECTION OF CITATIONS
SEARCH DETAIL
...