Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cancer Ther ; 20(12): 2317-2328, 2021 12.
Article in English | MEDLINE | ID: mdl-34583982

ABSTRACT

The protein arginine methyltransferase 5 (PRMT5) methylates a variety of proteins involved in splicing, multiple signal transduction pathways, epigenetic control of gene expression, and mechanisms leading to protein expression required for cellular proliferation. Dysregulation of PRMT5 is associated with clinical features of several cancers, including lymphomas, lung cancer, and breast cancer. Here, we describe the characterization of JNJ-64619178, a novel, selective, and potent PRMT5 inhibitor, currently in clinical trials for patients with advanced solid tumors, non-Hodgkin's lymphoma, and lower-risk myelodysplastic syndrome. JNJ-64619178 demonstrated a prolonged inhibition of PRMT5 and potent antiproliferative activity in subsets of cancer cell lines derived from various histologies, including lung, breast, pancreatic, and hematological malignancies. In primary acute myelogenous leukemia samples, the presence of splicing factor mutations correlated with a higher ex vivo sensitivity to JNJ-64619178. Furthermore, the potent and unique mechanism of inhibition of JNJ-64619178, combined with highly optimized pharmacological properties, led to efficient tumor growth inhibition and regression in several xenograft models in vivo, with once-daily or intermittent oral-dosing schedules. An increase in splicing burden was observed upon JNJ-64619178 treatment. Overall, these observations support the continued clinical evaluation of JNJ-64619178 in patients with aberrant PRMT5 activity-driven tumors.


Subject(s)
Enzyme Inhibitors/therapeutic use , Lung Neoplasms/drug therapy , Protein-Arginine N-Methyltransferases/drug effects , Pyrimidines/therapeutic use , Pyrroles/therapeutic use , Animals , Disease Models, Animal , Enzyme Inhibitors/pharmacology , Humans , Lung Neoplasms/pathology , Mice , Pyrimidines/pharmacology , Pyrroles/pharmacology
3.
Biosci Rep ; 35(6)2015 Oct 02.
Article in English | MEDLINE | ID: mdl-26431963

ABSTRACT

Maternal embryonic leucine zipper kinase (MELK), a serine/threonine protein kinase, has oncogenic properties and is overexpressed in many cancer cells. The oncogenic function of MELK is attributed to its capacity to disable critical cell-cycle checkpoints and reduce replication stress. Most functional studies have relied on the use of siRNA/shRNA-mediated gene silencing. In the present study, we have explored the biological function of MELK using MELK-T1, a novel and selective small-molecule inhibitor. Strikingly, MELK-T1 triggered a rapid and proteasome-dependent degradation of the MELK protein. Treatment of MCF-7 (Michigan Cancer Foundation-7) breast adenocarcinoma cells with MELK-T1 induced the accumulation of stalled replication forks and double-strand breaks that culminated in a replicative senescence phenotype. This phenotype correlated with a rapid and long-lasting ataxia telangiectasia-mutated (ATM) activation and phosphorylation of checkpoint kinase 2 (CHK2). Furthermore, MELK-T1 induced a strong phosphorylation of p53 (cellular tumour antigen p53), a prolonged up-regulation of p21 (cyclin-dependent kinase inhibitor 1) and a down-regulation of FOXM1 (Forkhead Box M1) target genes. Our data indicate that MELK is a key stimulator of proliferation by its ability to increase the threshold for DNA-damage tolerance (DDT). Thus, targeting MELK by the inhibition of both its catalytic activity and its protein stability might sensitize tumours to DNA-damaging agents or radiation therapy by lowering the DNA-damage threshold.


Subject(s)
Azepines/administration & dosage , Benzamides/administration & dosage , Breast Neoplasms/genetics , DNA Damage/drug effects , Enzyme Inhibitors/administration & dosage , Protein Serine-Threonine Kinases/biosynthesis , Apoptosis/drug effects , Ataxia Telangiectasia Mutated Proteins/biosynthesis , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Breast Neoplasms/radiotherapy , Cell Line, Tumor , Cell Proliferation/drug effects , Female , Forkhead Box Protein M1 , Forkhead Transcription Factors/biosynthesis , Gene Expression Regulation, Neoplastic , Humans , MCF-7 Cells , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/genetics
4.
Mol Biol Cell ; 21(4): 547-61, 2010 Feb 15.
Article in English | MEDLINE | ID: mdl-20032307

ABSTRACT

Centrosome duplication occurs once every cell cycle in a strictly controlled manner. Polo-like kinase 4 (PLK4) is a key regulator of this process whose kinase activity is essential for centriole duplication. Here, we show that PLK4 autophosphorylation of serine S305 is a consequence of kinase activation and enables the active fraction to be identified in the cell. Active PLK4 is detectable on the replicating mother centriole in G1/S, with the proportion of active kinase increasing through interphase to reach a maximum in mitosis. Activation of PLK4 at the replicating daughter centriole is delayed until G2, but a level equivalent to the replicating mother centriole is achieved in M phase. Active PLK4 is regulated by the proteasome, because either proteasome inhibition or mutation of the degron motif of PLK4 results in the accumulation of S305-phosphorylated PLK4. Autophosphorylation probably plays a role in the process of centriole duplication, because mimicking S305 phosphorylation enhances the ability of overexpressed PLK4 to induce centriole amplification. Importantly, we show that S305-phosphorylated PLK4 is specifically sequestered at the centrosome contrary to the nonphosphorylated form. These data suggest that PLK4 activity is restricted to the centrosome to prevent aberrant centriole assembly and sustained kinase activity is required for centriole duplication.


Subject(s)
Cell Cycle/physiology , Centrioles/metabolism , Protein Serine-Threonine Kinases/metabolism , Amino Acid Sequence , Animals , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Line , Centrosome/metabolism , Humans , Molecular Sequence Data , Mutagenesis, Site-Directed , Phosphorylation , Proteasome Endopeptidase Complex/metabolism , Protein Serine-Threonine Kinases/genetics , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Serine/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...