Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Diabetes Care ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38776437

ABSTRACT

OBJECTIVE: To examine the effects of insulin-adjunctive therapy with a sodium-glucose cotransporter 2 (SGLT2) inhibitor and a glucagon receptor antagonist (GRA) on glycemia, insulin use, and ketogenesis during insulinopenia in type 1 diabetes. RESEARCH DESIGN AND METHODS: In a randomized, double-blind, placebo-controlled, crossover trial we assessed the effects of adjunctive SGLT2 inhibitor therapy (dapagliflozin 10 mg daily) alone and in combination with the GRA volagidemab (70 mg weekly) in 12 adults with type 1 diabetes. Continuous glucose monitoring, insulin dosing, and insulin withdrawal tests (IWT) for measurement of glucose and ketogenesis during insulinopenia were completed during insulin-only (Baseline), SGLT2 inhibitor, and combination (SGLT2 inhibitor + GRA) therapy periods. RESULTS: Average glucose and percent time with glucose in range (70-180 mg/dL) improved with combination therapy versus Baseline and SGLT2 inhibitor (131 vs. 150 and 138 mg/dL [P < 0.001 and P = 0.01] and 86% vs. 70% and 78% [P < 0.001 and P = 0.03], respectively) without increased hypoglycemia. Total daily insulin use decreased with combination therapy versus Baseline and SGLT2 inhibitor (0.41 vs. 0.56 and 0.52 units/kg/day [P < 0.001 and P = 0.002]). Peak ß-hydroxybutyrate levels during IWT were lower with combination therapy than with SGLT2 inhibitor (2.0 vs. 2.4 mmol/L; P = 0.048) and similar to levels reached during the Baseline testing period (2.1 mmol/L). Participants reported enhanced treatment acceptability and satisfaction with combination therapy. CONCLUSIONS: Glucagon antagonism enhances the therapeutic effects of SGLT2 inhibition in type 1 diabetes. Combination therapy improves glycemic control, reduces insulin dosing, and suggests a strategy to unlock the benefits of SGLT2 inhibitors while mitigating the risk of diabetic ketoacidosis.

4.
Diabetes Obes Metab ; 25(7): 1985-1994, 2023 07.
Article in English | MEDLINE | ID: mdl-36999233

ABSTRACT

AIM: To determine the effects of astaxanthin treatment on lipids, cardiovascular disease (CVD) markers, glucose tolerance, insulin action and inflammation in individuals with prediabetes and dyslipidaemia. MATERIALS AND METHODS: Adult participants with dyslipidaemia and prediabetes (n = 34) underwent baseline blood draw, an oral glucose tolerance test and a one-step hyperinsulinaemic-euglycaemic clamp. They were then randomized (n = 22 treated, 12 placebo) to receive astaxanthin 12 mg daily or placebo for 24 weeks. Baseline studies were repeated after 12 and 24 weeks of therapy. RESULTS: After 24 weeks, astaxanthin treatment significantly decreased low-density lipoprotein (-0.33 ± 0.11 mM) and total cholesterol (-0.30 ± 0.14 mM) (both P < .05). Astaxanthin also reduced levels of the CVD risk markers fibrinogen (-473 ± 210 ng/mL), L-selectin (-0.08 ± 0.03 ng/mL) and fetuin-A (-10.3 ± 3.6 ng/mL) (all P < .05). While the effects of astaxanthin treatment did not reach statistical significance, there were trends toward improvements in the primary outcome measure, insulin-stimulated, whole-body glucose disposal (+0.52 ± 0.37 mg/m2 /min, P = .078), as well as fasting [insulin] (-5.6 ± 8.4 pM, P = .097) and HOMA2-IR (-0.31 ± 0.16, P = .060), suggesting improved insulin action. No consistent significant differences from baseline were observed for any of these outcomes in the placebo group. Astaxanthin was safe and well tolerated with no clinically significant adverse events. CONCLUSIONS: Although the primary endpoint did not meet the prespecified significance level, these data suggest that astaxanthin is a safe over-the-counter supplement that improves lipid profiles and markers of CVD risk in individuals with prediabetes and dyslipidaemia.


Subject(s)
Cardiovascular Diseases , Dyslipidemias , Prediabetic State , Adult , Humans , Prediabetic State/complications , Prediabetic State/drug therapy , Antioxidants/therapeutic use , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/etiology , Cardiovascular Diseases/prevention & control , Blood Glucose , Risk Factors , Insulin/therapeutic use , Glucose/therapeutic use , Cholesterol , Heart Disease Risk Factors , Dyslipidemias/drug therapy
5.
Nat Med ; 28(10): 2092-2099, 2022 10.
Article in English | MEDLINE | ID: mdl-36192552

ABSTRACT

Hyperglucagonemia contributes to hyperglycemia in patients with type 1 diabetes (T1D); however, novel therapeutics that block glucagon action could improve glycemic control. This phase 2 study evaluated the safety and efficacy of volagidemab, an antagonistic monoclonal glucagon receptor (GCGR) antibody, as an adjunct to insulin therapy in adults with T1D. The primary endpoint was change in daily insulin use at week 12. Secondary endpoints included changes in hemoglobin A1c (HbA1c) at week 13, in average daily blood glucose concentration and time within target range as assessed by continuous blood glucose monitoring (CGM) and seven-point glucose profile at week 12, incidence of hypoglycemic events, the proportion of subjects who achieve HbA1c reduction of ≥0.4%, volagidemab drug concentrations and incidence of anti-drug antibodies. Eligible participants (n = 79) were randomized to receive weekly subcutaneous injections of placebo, 35 mg volagidemab or 70 mg volagidemab. Volagidemab produced a reduction in total daily insulin use at week 12 (35 mg volagidemab: -7.59 units (U) (95% confidence interval (CI) -11.79, -3.39; P = 0.040 versus placebo); 70 mg volagidemab: -6.64 U (95% CI -10.99, -2.29; P = 0.084 versus placebo); placebo: -1.27 U (95% CI -5.4, 2.9)) without meeting the prespecified significance level (P < 0.025). At week 13, the placebo-corrected reduction in HbA1c percentage was -0.53 (95% CI -0.89 to -0.17, nominal P = 0.004) in the 35 mg volagidemab group and -0.49 (95% CI -0.85 to -0.12, nominal P = 0.010) in the 70 mg volagidemab group. No increase in hypoglycemia was observed with volagidemab therapy; however, increases in serum transaminases, low-density lipoprotein (LDL)-cholesterol and blood pressure were observed. Although the primary endpoint did not meet the prespecified significance level, we believe that the observed reduction in HbA1c and tolerable safety profile provide a rationale for further randomized studies to define the long-term efficacy and safety of volagidemab in patients with T1D.


Subject(s)
Antibodies, Monoclonal, Humanized , Diabetes Mellitus, Type 1 , Receptors, Glucagon , Adult , Antibodies, Monoclonal, Humanized/adverse effects , Blood Glucose , Blood Glucose Self-Monitoring , Diabetes Mellitus, Type 1/drug therapy , Double-Blind Method , Glucagon , Glycated Hemoglobin/analysis , Glycated Hemoglobin/therapeutic use , Humans , Insulin/therapeutic use , Lipoproteins, LDL/therapeutic use , Receptors, Glucagon/antagonists & inhibitors , Transaminases/therapeutic use , Treatment Outcome
6.
Diabetes Obes Metab ; 24(8): 1439-1447, 2022 08.
Article in English | MEDLINE | ID: mdl-35661378

ABSTRACT

AIMS: To determine the effect of TTP399, a hepatoselective glucokinase activator, on the risk of ketoacidosis during insulin withdrawal in individuals with type 1 diabetes (T1D). MATERIALS AND METHODS: Twenty-three participants with T1D using insulin pump therapy were randomized to 800 mg TTP399 (n = 12) or placebo (n = 11) for 7 to 10 days. After the treatment period, an insulin withdrawal test (IWT) was performed, during which insulin pumps were removed to induce ketogenesis. The IWT was stopped after 10 hours or if blood glucose reached >399 mg/dL [22.1 mmol/L], if beta-hydroxybutyrate (BHB) was >3.0 mmol/L, or for patient discomfort. The primary endpoint was the proportion of participants who reached BHB concentrations of 1 mmol/L or greater. RESULTS: During the 7- to 10-day treatment period, mean fasting plasma glucose was significantly reduced ( -27.6 vs. -4.4 mg/dL [-1.5 vs. -0.2 mmol/L]; P = 0.03) and there were fewer adverse events, including hypoglycaemia, in the TTP399-treated arm. During the IWT, no differences were observed between TTP399 and placebo in mean serum BHB concentration, mean duration of IWT, or BHB at termination of IWT. However, serum bicarbonate was numerically higher and urine acetoacetate was quantitatively lower in the TTP399-treated participants. As a result of higher bicarbonate values, none of the TTP399-treated participants met the prespecified criteria for diabetic ketoacidosis (DKA), defined as BHB >3 mmol/L and serum bicarbonate <18 mEq/L, compared to 42% of placebo-treated participants. CONCLUSIONS: When used as an adjunctive therapy to insulin, TTP399 improves glycaemia without increasing hypoglycaemia in individuals with T1D. During acute insulin withdrawal, TTP399 did not increase BHB concentrations and decreased the incidence of DKA.


Subject(s)
Diabetes Mellitus, Type 1 , Diabetic Ketoacidosis , Hypoglycemia , Ketosis , Bicarbonates/therapeutic use , Blood Glucose , Diabetes Mellitus, Type 1/complications , Diabetes Mellitus, Type 1/drug therapy , Diabetic Ketoacidosis/chemically induced , Diabetic Ketoacidosis/epidemiology , Glucokinase , Humans , Hypoglycemia/chemically induced , Insulin/adverse effects , Insulin, Regular, Human/therapeutic use , Organic Chemicals
7.
Diabetes ; 71(3): 511-519, 2022 03 01.
Article in English | MEDLINE | ID: mdl-34857545

ABSTRACT

Individuals with type 1 diabetes have an impaired glucagon counterregulatory response to hypoglycemia. Sodium-glucose cotransporter (SGLT) inhibitors increase glucagon concentrations. We evaluated whether SGLT inhibition restores the glucagon counterregulatory hormone response to hypoglycemia. Adults with type 1 diabetes (n = 22) were treated with the SGLT2 inhibitor dapagliflozin (5 mg daily) or placebo for 4 weeks in a randomized, double-blind, crossover study. After each treatment phase, participants underwent a hyperinsulinemic-hypoglycemic clamp. Basal glucagon concentrations were 32% higher following dapagliflozin versus placebo, with a median within-participant difference of 2.75 pg/mL (95% CI 1.38-12.6). However, increased basal glucagon levels did not correlate with decreased rates of hypoglycemia and thus do not appear to be protective in avoiding hypoglycemia. During hypoglycemic clamp, SGLT2 inhibition did not change counterregulatory hormone concentrations, time to recovery from hypoglycemia, hypoglycemia symptoms, or cognitive function. Thus, despite raising basal glucagon concentrations, SGLT inhibitor treatment did not restore the impaired glucagon response to hypoglycemia. We propose that clinical reduction in hypoglycemia associated with these agents is a result of changes in diabetes care (e.g., lower insulin doses or improved glycemic variability) as opposed to a direct, physiologic effect of these medications on α-cell function.


Subject(s)
Diabetes Mellitus, Type 1/drug therapy , Fasting , Glucagon/blood , Hypoglycemia/physiopathology , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Adult , Benzhydryl Compounds/therapeutic use , Blood Glucose/analysis , Diabetes Mellitus, Type 1/blood , Double-Blind Method , Fatty Acids, Nonesterified/blood , Female , Glucose Clamp Technique , Glucosides/therapeutic use , Glycemic Control/methods , Humans , Hypoglycemia/prevention & control , Insulin/blood , Male , Middle Aged , Sodium-Glucose Transporter 2 Inhibitors/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL
...