Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
EMBO J ; 42(18): e111807, 2023 09 18.
Article in English | MEDLINE | ID: mdl-37606072

ABSTRACT

Cilia are important cellular organelles for signaling and motility and are constructed via intraflagellar transport (IFT). RabL2 is a small GTPase that localizes to the basal body of cilia via an interaction with the centriolar protein CEP19 before downstream association with the IFT machinery, which is followed by initiation of IFT. We reconstituted and purified RabL2 with CEP19 or IFT proteins to show that a reconstituted pentameric IFT complex containing IFT81/74 enhances the GTP hydrolysis rate of RabL2. The binding site on IFT81/74 that promotes GTP hydrolysis in RabL2 was mapped to a 70-amino-acid-long coiled-coil region of IFT81/74. We present structural models for RabL2-containing IFT complexes that we validate in vitro and in cellulo and demonstrate that Chlamydomonas IFT81/74 enhances GTP hydrolysis of human RabL2, suggesting an ancient evolutionarily conserved activity. Our results provide an architectural understanding of how RabL2 is incorporated into the IFT complex and a molecular rationale for why RabL2 dissociates from anterograde IFT trains soon after departure from the ciliary base.


Subject(s)
GTPase-Activating Proteins , Signal Transduction , Humans , GTPase-Activating Proteins/genetics , Biological Transport , Amino Acids , Guanosine Triphosphate , Muscle Proteins , Cytoskeletal Proteins
2.
EMBO J ; 41(24): e112440, 2022 12 15.
Article in English | MEDLINE | ID: mdl-36354106

ABSTRACT

Cilia are ubiquitous eukaryotic organelles impotant for cellular motility, signaling, and sensory reception. Cilium formation requires intraflagellar transport of structural and signaling components and involves 22 different proteins organized into intraflagellar transport (IFT) complexes IFT-A and IFT-B that are transported by molecular motors. The IFT-B complex constitutes the backbone of polymeric IFT trains carrying cargo between the cilium and the cell body. Currently, high-resolution structures are only available for smaller IFT-B subcomplexes leaving > 50% structurally uncharacterized. Here, we used Alphafold to structurally model the 15-subunit IFT-B complex. The model was validated using cross-linking/mass-spectrometry data on reconstituted IFT-B complexes, X-ray scattering in solution, diffraction from crystals as well as site-directed mutagenesis and protein-binding assays. The IFT-B structure reveals an elongated and highly flexible complex consistent with cryo-electron tomographic reconstructions of IFT trains. The IFT-B complex organizes into IFT-B1 and IFT-B2 parts with binding sites for ciliary cargo and the inactive IFT dynein motor, respectively. Interestingly, our results are consistent with two different binding sites for IFT81/74 on IFT88/70/52/46 suggesting the possibility of different structural architectures for the IFT-B1 complex. Our data present a structural framework to understand IFT-B complex assembly, function, and ciliopathy variants.


Subject(s)
Cilia , Dyneins , Cilia/metabolism , Dyneins/metabolism , Biological Transport , Binding Sites , Models, Structural , Flagella/metabolism
3.
Sci Adv ; 8(15): eabn0832, 2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35427153

ABSTRACT

Dysfunctional cilia cause pleiotropic human diseases termed ciliopathies. These hereditary maladies are often caused by defects in cilia assembly, a complex event that is regulated by the ciliogenesis and planar polarity effector (CPLANE) proteins Wdpcp, Inturned, and Fuzzy. CPLANE proteins are essential for building the cilium and are mutated in multiple ciliopathies, yet their structure and molecular functions remain elusive. Here, we show that mammalian CPLANE proteins comprise a bona fide complex and report the near-atomic resolution structures of the human Wdpcp-Inturned-Fuzzy complex and of the mouse Wdpcp-Inturned-Fuzzy complex bound to the small guanosine triphosphatase Rsg1. Notably, the crescent-shaped CPLANE complex binds phospholipids such as phosphatidylinositol 3-phosphate via multiple modules and a CPLANE ciliopathy mutant exhibits aberrant lipid binding. Our study provides critical structural and functional insights into an enigmatic ciliogenesis-associated complex as well as unexpected molecular rationales for ciliopathies.

4.
Nat Commun ; 9(1): 4179, 2018 10 09.
Article in English | MEDLINE | ID: mdl-30301898

ABSTRACT

In response to cellular stresses bacteria conserve energy by dimerization of ribosomes into inactive hibernating 100S ribosome particles. Ribosome dimerization in Thermus thermophilus is facilitated by hibernation-promoting factor (TtHPF). In this study we demonstrate high sensitivity of Tt100S formation to the levels of TtHPF and show that a 1:1 ratio leads to optimal dimerization. We report structures of the T. thermophilus 100S ribosome determined by cryo-electron microscopy to average resolutions of 4.13 Å and 4.57 Å. In addition, we present a 3.28 Å high-resolution cryo-EM reconstruction of a 70S ribosome from a hibernating ribosome dimer and reveal a role for the linker region connecting the TtHPF N- and C-terminal domains in translation inhibition by preventing Shine-Dalgarno duplex formation. Our work demonstrates that species-specific differences in the dimerization interface govern the overall conformation of the 100S ribosome particle and that for Thermus thermophilus no ribosome-ribosome interactions are involved in the interface.


Subject(s)
Bacterial Proteins/metabolism , Cryoelectron Microscopy , Dimerization , Ribosomes/ultrastructure , Thermus thermophilus/metabolism , DNA-Directed RNA Polymerases/metabolism , Models, Molecular , Protein Domains , Protein Subunits/chemistry , Protein Subunits/metabolism , Ribosomes/metabolism
5.
Proteins ; 86(4): 405-413, 2018 04.
Article in English | MEDLINE | ID: mdl-29318657

ABSTRACT

Rab GTPases and their effectors, activators and guanine nucleotide exchange factors (GEFs) are essential for vesicular transport. Rab8 and its GEF Rabin8 function in formation of the cilium organelle important for developmental signaling and sensory reception. Here, we show by size exclusion chromatography and analytical ultracentrifugation that Rabin8 exists in equilibrium between dimers and tetramers. The crystal structure of tetrameric Rabin8 GEF domain reveals an occluded Rab8 binding site suggesting that this oligomer is enzymatically inactive, a notion we verify experimentally using Rabin8/Rab8 GEF assays. We outline a procedure for the purification of active dimeric Rabin8 GEF-domain for in vitro activity assays.


Subject(s)
Protein Serine-Threonine Kinases/chemistry , Binding Sites , Crystallography, X-Ray , Germinal Center Kinases , Humans , Models, Molecular , Protein Conformation , Protein Interaction Domains and Motifs , Protein Multimerization , Protein Serine-Threonine Kinases/metabolism , rab GTP-Binding Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...