Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Neuroimage ; 121: 115-25, 2015 Nov 01.
Article in English | MEDLINE | ID: mdl-26188262

ABSTRACT

Reward availability is known to facilitate various cognitive operations, which is usually studied in cue-based paradigms that allow for enhanced preparation in reward-related trials. However, recent research using tasks that signal reward availability via task-relevant stimuli suggests that reward can also rapidly promote performance independent of global strategic preparation. Notably, this effect was also observed in a reward-related stop-signal task, in which behavioral measures of inhibition speed were found to be shorter in trials signaling reward. Corresponding fMRI results implied that this effect relies on boosted reactive control as indicated by increased activity in the 'inhibition-related network' in the reward-related condition. Here, we used EEG to better characterize transient modulations of attentional processes likely preceding this ultimate implementation of response inhibition. Importantly, such modulations would probably reflect enhanced proactive control in the form of more top-down attention to reward-related features. Counter to the notion that behavioral benefits would rely purely on reactive control, we found increased stop-evoked attentional processing (larger N1 component) on reward-related trials. This effect was accompanied by enhanced frontal P3 amplitudes reflecting successful stopping, and earlier and larger ERP differences between successful and failed stop trials in the reward-related condition. Finally, more global proactive control processes in the form of a reward context modulation of reward-unrelated trials did not have an effect on stopping performance but did influence attentional processing of go stimuli. Together, these results suggest that proactive and reactive processes can interact to bring about stimulus-specific reward benefits when the task precludes differential global preparation.


Subject(s)
Attention/physiology , Cerebral Cortex/physiology , Evoked Potentials/physiology , Executive Function/physiology , Inhibition, Psychological , Psychomotor Performance/physiology , Reward , Adolescent , Adult , Electroencephalography , Female , Humans , Male , Young Adult
2.
Neuroimage ; 84: 639-47, 2014 Jan 01.
Article in English | MEDLINE | ID: mdl-24064071

ABSTRACT

Recently, attempts have been made to disentangle the neural underpinnings of preparatory processes related to reward and attention. Functional magnetic resonance imaging (fMRI) research showed that neural activity related to the anticipation of reward and to attentional demands invokes neural activity patterns featuring large-scale overlap, along with some differences and interactions. Due to the limited temporal resolution of fMRI, however, the temporal dynamics of these processes remain unclear. Here, we report an event-related potentials (ERP) study in which cued attentional demands and reward prospect were combined in a factorial design. Results showed that reward prediction dominated early cue processing, as well as the early and later parts of the contingent negative variation (CNV) slow-wave ERP component that has been associated with task-preparation processes. Moreover these reward-related electrophysiological effects correlated across participants with response time speeding on reward-prospect trials. In contrast, cued attentional demands affected only the later part of the CNV, with the highest amplitudes following cues predicting high-difficulty potential-reward targets, thus suggesting maximal task preparation when the task requires it and entails reward prospect. Consequently, we suggest that task-preparation processes triggered by reward can arise earlier, and potentially more directly, than strategic top-down aspects of preparation based on attentional demands.


Subject(s)
Attention/physiology , Brain Mapping/methods , Brain/physiology , Evoked Potentials/physiology , Reward , Adolescent , Contingent Negative Variation/physiology , Electroencephalography , Female , Humans , Male , Psychomotor Performance/physiology , Reaction Time/physiology , Young Adult
3.
J Cogn Neurosci ; 26(5): 1021-38, 2014 May.
Article in English | MEDLINE | ID: mdl-24345171

ABSTRACT

In this study, we leveraged the high temporal resolution of EEG to examine the neural mechanisms underlying the flexible regulation of cognitive control that unfolds over different timescales. We measured behavioral and neural effects of color-word incongruency, as different groups of participants performed three different versions of color-word Stroop tasks in which the relative timing of the color and word features varied from trial to trial. For this purpose, we used a standard Stroop color identification task with equal congruent-to-incongruent proportions (50%/50%), along with two versions of the "Reverse Stroop" word identification tasks, for which we manipulated the incongruency proportion (50%/50% and 80%/20%). Two canonical ERP markers of neural processing of stimulus incongruency, the frontocentral negative polarity incongruency wave (NINC) and the late positive component (LPC), were evoked across the various conditions. Results indicated that color-word incongruency interacted with the relative feature timing, producing greater neural and behavioral effects when the task-irrelevant stimulus preceded the target, but still significant effects when it followed. Additionally, both behavioral and neural incongruency effects were reduced by nearly half in the word identification task (Reverse Stroop 50/50) relative to the color identification task (Stroop 50/50), with these effects essentially fully recovering when incongruent trials appeared only infrequently (Reverse Stroop 80/20). Across the conditions, NINC amplitudes closely paralleled RTs, indicating this component is sensitive to the overall level of stimulus conflict. In contrast, LPC amplitudes were largest with infrequent incongruent trials, suggesting a possible readjustment role when proactive control is reduced. These findings thus unveil distinct control mechanisms that unfold over time in response to conflicting stimulus input under different contexts.


Subject(s)
Brain/physiology , Cognition/physiology , Photic Stimulation/methods , Psychomotor Performance/physiology , Reaction Time/physiology , Adolescent , Adult , Female , Humans , Male , Young Adult
4.
Behav Brain Res ; 229(1): 123-30, 2012 Apr 01.
Article in English | MEDLINE | ID: mdl-22245527

ABSTRACT

The fundamental cognitive-control function of inhibitory control over motor behavior has been extensively investigated using the Stop-signal task. The critical behavioral parameter describing stopping efficacy is the Stop-signal response time (SSRT), and correlations with estimates of this parameter are commonly used to establish that other variables (e.g., other behavioral measures or brain activity measures) are closely related to inhibitory motor control. Recently, however, it has been argued that SSRT estimates can be strongly distorted if participants strategically slow down their responses over the course of the experiment, resulting in the SSRT no longer reliably representing response-inhibition efficacy. Here, we performed new analyses on behavioral and functional data from an fMRI version of the Stop-signal task to gauge the consequences of using different SSRT estimation approaches that are differentially prone to the influence of strategic response slowing. The results indicate that the SSRT estimation approach can dramatically change behavior-behavior correlations. Specifically, a correlation between the SSRT and Go-trial accuracy that was highly significant with one estimation approach, virtually disappeared for the other. Additional analyses indeed supported that this effect was related to strategic response slowing. Concerning brain-behavior correlations, only the left anterior insula was found to be significantly correlated with the SSRT within the set of areas tested here. Interestingly, this brain-behavior correlation differed little for the different SSRT-estimation procedures. In sum, the current results highlight that different SSRT-estimation procedures can strongly influence the distribution of SSRT values across subjects, which in turn can ramify into correlational analyses with other parameters.


Subject(s)
Brain/physiology , Inhibition, Psychological , Reaction Time/physiology , Time Perception/physiology , Brain/blood supply , Brain Mapping , Decision Making/physiology , Female , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Male , Oxygen/blood , Statistics as Topic , Young Adult
5.
J Neurophysiol ; 107(5): 1393-402, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22157127

ABSTRACT

Being able to effectively explore the visual world is of fundamental importance, and it has been suggested that the straight-ahead gaze position within the egocentric reference frame ("primary position") might play a special role in this context. In the present study we employed human electroencephalography (EEG) to examine neural activity related to the spatial guidance of saccadic eye movements. Moreover, we sought to investigate whether such activity would be modulated by the spatial relation of saccade direction to the primary gaze position (recentering saccades). Participants executed endogenously cued saccades between five equidistant locations along the horizontal meridian. This design allowed for the comparison of isoamplitude saccades from the same starting position that were oriented either toward the primary position (centripetal) or further away from it (centrifugal). By back-averaging time-locked to the saccade onset on each trial, we identified a parietally distributed, negative-polarity EEG deflection contralateral to the direction of the upcoming saccade. Importantly, this contralateral presaccadic negativity, which appeared to reflect the location-specific attentional guidance of the eye movement, was attenuated for recentering saccades relative to isoamplitude centrifugal saccades. This differential electrophysiological signature was paralleled by faster saccadic reaction times and was substantially more apparent when time-locking the data to the onset of the saccade rather than to the onset of the cue, suggesting a tight temporal association with saccade initiation. The diminished level of this presaccadic component for recentering saccades may reflect the preferential coding of the straight-ahead gaze position, in which both the eye-centered and head-centered reference frames are perfectly aligned and from which the visual world can be effectively explored.


Subject(s)
Attention/physiology , Cues , Photic Stimulation/methods , Saccades/physiology , Electroencephalography/methods , Electrooculography/methods , Female , Humans , Male , Reaction Time/physiology , Young Adult
6.
Cereb Cortex ; 21(10): 2204-16, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21372123

ABSTRACT

Markers of preparatory visual-spatial attention in sensory cortex have been described both as lateralized, slow-wave event-related potential (ERP) components and as lateralized changes in oscillatory-electroencephalography alpha power, but the roles of these markers and their functional relationship are still unclear. Here, 3 versions of a visual-spatial cueing paradigm, differing in perceptual task difficulty and/or response instructions, were used to investigate the functional relationships between posterior oscillatory-alpha changes and our previously reported posterior, slow-wave biasing-related negativity (swBRN) ERP activity. The results indicate that the swBRN reflects spatially specific, pretarget preparatory activity sensitive to the expected perceptual difficulty of the target detection task, correlating in both location and strength with the early sensory-processing N1 ERP to the target, consistent with reflecting a preparatory baseline-shift mechanism. In contrast, contralateral event-related decreases in alpha-band power were relatively insensitive to perceptual difficulty and differed topographically from both the swBRN and target N1. Moreover, when response instructions emphasized making immediate responses to targets, compared with prescribing delayed responses, contralateral alpha-event-related desynchronization activity was particularly strong and correlated with the longer latency target-P3b activity. Thus, in contrast to the apparent perceptual-biasing role of swBRN activity, contralateral posterior alpha activity may represent an attentionally maintained task set linking stimulus-specific information and task-specific response requirements.


Subject(s)
Alpha Rhythm/physiology , Anticipation, Psychological/physiology , Attention/physiology , Somatosensory Cortex/physiology , Space Perception/physiology , Visual Cortex/physiology , Adolescent , Adult , Female , Humans , Male , Photic Stimulation/methods , Psychomotor Performance/physiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...