Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Vis ; 24(6): 2, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38833255

ABSTRACT

The spectral locus of unique yellow was determined for flashes of different sizes (<11 arcmin) and durations (<500 ms) presented in and near the fovea. An adaptive optics scanning laser ophthalmoscope was used to minimize the effects of higher-order aberrations during simultaneous stimulus delivery and retinal imaging. In certain subjects, parafoveal cones were classified as L, M, or S, which permitted the comparison of unique yellow measurements with variations in local L/M ratios within and between observers. Unique yellow shifted to longer wavelengths as stimulus size or duration was reduced. This effect is most pronounced for changes in size and more apparent in the fovea than in the parafovea. The observed variations in unique yellow are not entirely predicted from variations in L/M ratio and therefore implicate neural processes beyond photoreception.


Subject(s)
Fovea Centralis , Photic Stimulation , Retinal Cone Photoreceptor Cells , Humans , Photic Stimulation/methods , Retinal Cone Photoreceptor Cells/physiology , Fovea Centralis/physiology , Color Perception/physiology , Retina/physiology , Adult , Ophthalmoscopy/methods
2.
J Vis ; 23(12): 4, 2023 10 04.
Article in English | MEDLINE | ID: mdl-37801322

ABSTRACT

The 2-photon effect in vision occurs when two photons of the same wavelength are absorbed by cone photopigment in the retina and create a visual sensation matching the appearance of light close to half their wavelength. This effect is especially salient for infrared light, where humans are mostly insensitive to 1-photon isomerizations and thus any perception is dominated by 2-photon isomerizations. This phenomenon can be made more readily visible using short-pulsed lasers, which increase the likelihood of 2-photon excitation by making photon arrivals at the retina more concentrated in time. Adaptive optics provides another avenue for enhancing the 2-photon effect by focusing light more tightly at the retina, thereby increasing the spatial concentration of incident photons. This article makes three contributions. First, we demonstrate through color-matching experiments that an adaptive optics correction can provide a 25-fold increase in the luminance of the 2-photon effect-a boost equivalent to reducing pulse width by 96%. Second, we provide image-based evidence that the 2-photon effect occurs at the photoreceptor level. Third, we use our results to compute the specifications for a system that could utilize 2-photon vision and adaptive optics to image and stimulate the retina using a single infrared wavelength and reach luminance levels comparable to conventional displays.


Subject(s)
Retinal Cone Photoreceptor Cells , Vision, Ocular , Humans , Retina
3.
J Vis ; 23(5): 2, 2023 05 02.
Article in English | MEDLINE | ID: mdl-37133838

ABSTRACT

When single cones are stimulated with spots of 543-nm light presented against a white background, subjects report percepts that vary between predominately red, white, and green. However, light of the same spectral composition viewed over a large field under normal viewing conditions looks invariably green and highly saturated. It remains unknown what stimulus parameters are most important for governing the color appearance in the transition between these two extreme cases. The current study varied the size, intensity and retinal motion of stimuli presented in an adaptive optics scanning laser ophthalmoscope. Stimuli were either stabilized on target locations or allowed to drift across the retina with the eye's natural motion. Increasing both stimulus size and intensity led to higher likelihoods that monochromatic spots of light were perceived as green, whereas only higher intensities led to increases in perceived saturation. The data also show an interaction between size and intensity, suggesting that the balance between magnocellular and parvocellular activation may be critical factors for color perception. Surprisingly, under the range of conditions tested, color appearance did not depend on whether stimuli were stabilized. Sequential activation of many cones does not appear to drive hue and saturation perception as effectively as simultaneous activation of many cones.


Subject(s)
Retina , Retinal Cone Photoreceptor Cells , Humans , Retina/physiology , Retinal Cone Photoreceptor Cells/physiology , Vision, Ocular , Color Perception/physiology
4.
Vision Res ; 188: 85-95, 2021 11.
Article in English | MEDLINE | ID: mdl-34293614

ABSTRACT

In anomalous trichromacy, the color signals available from comparing the activities of the two classes of cone sensitive in the medium and long wavelength parts of the spectrum are much reduced from those available in normal trichromacy, and color discrimination thresholds along the red-green axis are correspondingly elevated. Yet there is evidence that suprathreshold color perception is relatively preserved; this has led to the suggestion that anomalous trichromats post-receptorally amplify their impoverished red-green signals. To test this idea, we measured chromatic discrimination from white and from saturated red and green pedestals. If there is no post-receptoral compensation, the anomalous trichromat's loss of chromatic contrast will apply equally to the pedestal and to the test color. Coupled with a compressively nonlinear neural representation of saturation, this means that a given pedestal contrast will cause a smaller than normal modulation of discrimination sensitivity. We examined cases where chromatic pedestals impair the color discrimination of normal trichromatic observers. As predicted, anomalous observers experienced less impairment than normal trichromats, though they remained less sensitive than normal trichromats. Although the effectiveness of chromatic pedestals in impairing color discrimination was less for anomalous than for normal trichromats, the chromatic pedestals were more effective for anomalous observers than would be expected if the anomalous post-receptoral visual system were the same as in normal trichromacy; the hypothesis of zero compensation can be rejected. This might suggest that the effective contrast of the pedestal is post-receptorally amplified. But on closer analysis, the results do not support candidate simple models involving post-receptoral compensation either.


Subject(s)
Color Vision Defects , Color , Color Perception , Color Perception Tests , Humans , Retinal Cone Photoreceptor Cells
5.
Invest Ophthalmol Vis Sci ; 61(4): 42, 2020 04 09.
Article in English | MEDLINE | ID: mdl-32343782

ABSTRACT

Purpose: To study cone structure and function in patients with retinitis pigmentosa (RP) owing to mutations in rhodopsin (RHO), expressed in rod outer segments, and mutations in the RP-GTPase regulator (RPGR) gene, expressed in the connecting cilium of rods and cones. Methods: Four eyes of 4 patients with RHO mutations, 5 eyes of 5 patients with RPGR mutations, and 4 eyes of 4 normal subjects were studied. Cone structure was studied with confocal and split-detector adaptive optics scanning laser ophthalmoscopy (AOSLO) and spectral-domain optical coherence tomography. Retinal function was measured using a 543-nm AOSLO-mediated adaptive optics microperimetry (AOMP) stimulus. The ratio of sensitivity to cone density was compared between groups using the Wilcoxon rank-sum test. Results: AOMP sensitivity/cone density in patients with RPGR mutations was significantly lower than normal (P < 0.001) and lower than patients with RHO mutations (P < 0.015), whereas patients with RHO mutations were similar to normal (P > 0.9). Conclusions: Retinal sensitivity/cone density was lower in patients with RPGR mutations than normal and lower than patients with RHO mutations, perhaps because cones express RPGR and degenerate primarily, whereas cones in eyes with RHO mutations die secondary to rod degeneration. High-resolution microperimetry can reveal differences in cone degeneration in patients with different forms of RP.


Subject(s)
Eye Proteins/genetics , Retinal Cone Photoreceptor Cells/pathology , Retinitis Pigmentosa/diagnostic imaging , Retinitis Pigmentosa/genetics , Rhodopsin/genetics , Tomography, Optical Coherence/methods , Adult , Age Factors , Case-Control Studies , Electroretinography/methods , Female , Gene Expression Regulation , Humans , Male , Mutation/genetics , Ophthalmoscopy/methods , Risk Assessment , Scanning Laser Polarimetry/methods , Sex Factors , Statistics, Nonparametric , Young Adult
6.
J Vis ; 19(11): 8, 2019 09 03.
Article in English | MEDLINE | ID: mdl-31532470

ABSTRACT

The study of fixational eye motion has implications for the neural and computational underpinnings of vision. One component of fixational eye motion is tremor, a high-frequency oscillatory jitter reported to be anywhere from ∼11-60 arcseconds in amplitude. In order to isolate the effects of tremor on the retinal image directly and in the absence of optical blur, high-frequency, high-resolution eye traces were collected in six subjects from videos recorded with an adaptive optics scanning laser ophthalmoscope. Videos were acquired while subjects engaged in an active fixation task where they fixated on a tumbling E stimulus and reported changes in its orientation. Spectral analysis was conducted on periods of ocular drift, with all drifts being concatenated together after removal of saccades from the trace. The resultant amplitude spectra showed a slight deviation from the traditional 1/f nature of optical drift in the frequency range of 50-100 Hz, which is indicative of tremor. However, this deviation rarely exceeded 1 arcsecond and the consequent standard deviation of retinal image motion over the tremor band (50-100 Hz) was just over 5 arcseconds. Given such a small amplitude, it is unlikely tremor will contribute in any meaningful way to the visual percept.


Subject(s)
Fixation, Ocular/physiology , Retina/physiology , Saccades/physiology , Tremor/physiopathology , Vision, Ocular/physiology , Adaptation, Physiological/physiology , Adult , Humans , Motion , Orientation, Spatial/physiology , Video Recording
7.
PLoS One ; 14(7): e0211397, 2019.
Article in English | MEDLINE | ID: mdl-31344029

ABSTRACT

The human retina contains three classes of cone photoreceptors each sensitive to different portions of the visual spectrum: long (L), medium (M) and short (S) wavelengths. Color information is computed by downstream neurons that compare relative activity across the three cone types. How cone signals are combined at a cellular scale has been more difficult to resolve. This is especially true near the fovea, where spectrally-opponent neurons in the parvocellular pathway draw excitatory input from a single cone and thus even the smallest stimulus projected through natural optics will engage multiple color-signaling neurons. We used an adaptive optics microstimulator to target individual and pairs of cones with light. Consistent with prior work, we found that color percepts elicited from individual cones were predicted by their spectral sensitivity, although there was considerable variability even between cones within the same spectral class. The appearance of spots targeted at two cones were predicted by an average of their individual activations. However, two cones of the same subclass elicited percepts that were systematically more saturated than predicted by an average. Together, these observations suggest both spectral opponency and prior experience influence the appearance of small spots.


Subject(s)
Color Perception/physiology , Color Vision/physiology , Retinal Cone Photoreceptor Cells/physiology , Adult , Color , Female , Fovea Centralis , Humans , Male , Retina/physiology
8.
Biomed Opt Express ; 10(4): 1691-1706, 2019 Apr 01.
Article in English | MEDLINE | ID: mdl-31061763

ABSTRACT

Tracking SLO systems equipped to perform retinally targeted stimulus delivery typically use near-IR wavelengths for retinal imaging and eye tracking and visible wavelengths for stimulation. The lateral offsets between wavelengths caused by transverse chromatic aberration (TCA) must be carefully corrected in order to deliver targeted stimuli to the correct location on the retina. However, both the magnitude and direction of the TCA offset is dependent on the position of the eye's pupil relative to the incoming beam, and thus can change dynamically within an experimental session without proper control of the pupil position. The goals of this study were twofold: 1) To assess sources of variability in TCA alignments as a function of pupil displacements in an SLO and 2) To demonstrate a novel method for real-time correction of chromatic offsets. To summarize, we found substantial between- and within-subject variability in TCA in the presence of monochromatic aberrations. When adaptive optics was used to fully correct for monochromatic aberrations, variability both within and between observers was minimized. In a second experiment, we demonstrate that pupil tracking can be used to update stimulus delivery in the SLO in real time to correct for variability in chromatic offsets with pupil displacements.

9.
J Vis ; 18(11): 19, 2018 10 01.
Article in English | MEDLINE | ID: mdl-30372729

ABSTRACT

Organisms are faced with the challenge of making inferences about the physical world from incomplete incoming sensory information. One strategy to combat ambiguity in this process is to combine new information with prior experiences. We investigated the strategy of combining these information sources in color vision. Single cones in human subjects were stimulated and the associated percepts were recorded. Subjects rated each flash for brightness, hue, and saturation. Brightness ratings were proportional to stimulus intensity. Saturation was independent of intensity, but varied between cones. Hue, in contrast, was assigned in a stereotyped manner that was predicted by cone type. These experiments revealed that, near the fovea, long and middle wavelength sensitive cones produce sensations that can be reliably distinguished on the basis of hue, but not saturation or brightness. Taken together, these observations implicate the high-resolution, color-opponent parvocellular pathway in this low-level visual task.


Subject(s)
Color Vision/physiology , Fovea Centralis , Retinal Cone Photoreceptor Cells/physiology , Adult , Color , Female , Humans , Male , Sensory Thresholds
SELECTION OF CITATIONS
SEARCH DETAIL
...