Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Type of study
Publication year range
1.
J Invertebr Pathol ; 102(2): 173-81, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19682458

ABSTRACT

Eighteen Xenorhabdus isolates associated with Spanish entomopathogenic nematodes of the genus Steinernema were characterized using a polyphasic approach including phenotypic and molecular methods. Two isolates were classified as Xenorhabdus nematophila and were associated with Steinernema carpocapsae. Sixteen isolates were classified as Xenorhabdus bovienii, of which fifteen were associated with Steinernema feltiae and one with Steinernema kraussei. Two X. bovienii Phase II were also isolated, one instable phase isolated from S. feltiae strain Rioja and one stable phase from S. feltiae strain BZ. Four representative bacterial isolates were chosen to study their pathogenicity against Spodoptera littoralis with and without the presence of their nematode host. The four bacterial isolates were pathogenic for S. littoralis leading to septicemia 24h post-injection and killing around 90% of the insect larvae 36 h post-injection, except for that isolated from S. kraussei. After 48 h of injection, this latter isolate showed a lower final population in the larval hemolymph (10(7) instead of 10(8)CFU per larvae) and a lower larval mortality (70% instead of 95-100%). The virulence of the nematode-bacteria complexes against S. littoralis showed similar traits with a significant insect larvae mortality (80-90%) 5 days post-infection except for S. kraussei, although this strain reached similar of larval mortality at 7 days after infection.


Subject(s)
Insect Control/methods , Pest Control, Biological/methods , Rhabditida/microbiology , Xenorhabdus , Animals , Hemolymph/microbiology , Host-Pathogen Interactions , Larva , Rhabditida Infections , Spodoptera/parasitology , Symbiosis , Xenorhabdus/isolation & purification , Xenorhabdus/pathogenicity
2.
Parasitology ; 131(Pt 5): 687-94, 2005 Nov.
Article in English | MEDLINE | ID: mdl-16255827

ABSTRACT

The entomopathogenic nematode Steinernema carpocapsae is mutualistically associated with the bacterium Xenorhabdus nematophila. Infective Juveniles (IJs) transport X. nematophila cells that provide them with good conditions to reproduce within the insect. In the laboratory, long term stationary-phase culture conditions sometimes lead X. nematophila's variant 1 cells, which were previously isolated from the worms, to spontaneously and irreversibly change into a new phenotypic variant (variant 2). In this paper, we tested the ability of each phenotypic variant to (i) be transmitted by IJs, (ii) to optimize the worm's fitness within the insect, and (iii) to counteract the effect of closely related antagonistic bacteria previously shown as being able to totally prevent S. carpocapsae's reproduction within the insect. We found that IJs did associate with cells of both phenotypes but that the variant 2 cells were preferentially retained by the nematodes when both variants were present in the insect. Both phenotypic variants led to the same fitness of S. carpocapsae in insects not infected by antagonistic bacteria. In insects infected by antagonistic bacteria, both variants were able to provide protection to S. carpocapsae. Nevertheless, this protection depended on the phenotypic variant and the antagonistic bacteria that were co-injected into the insect. Further analysis conduced in vitro showed that this variability could be partly linked to the sensitivity of each antagonistic bacterium to xenorhabdicin, produced by X. nematophila.


Subject(s)
Nematoda/microbiology , Symbiosis , Xenorhabdus/physiology , Animals , Phenotype , Xenorhabdus/genetics
3.
Int J Syst Evol Microbiol ; 54(Pt 4): 1301-1310, 2004 Jul.
Article in English | MEDLINE | ID: mdl-15280306

ABSTRACT

The relationship of Photorhabdus isolates that were cultured from human clinical specimens in Australia to Photorhabdus asymbiotica isolates from human clinical specimens in the USA and to species of the genus Photorhabdus that are associated symbiotically with entomopathogenic nematodes was evaluated. A polyphasic approach that involved DNA-DNA hybridization, phylogenetic analyses of 16S rRNA and gyrB gene sequences and phenotypic characterization was adopted. These investigations showed that gyrB gene sequence data correlated well with DNA-DNA hybridization and phenotypic data, but that 16S rRNA gene sequence data were not suitable for defining species within the genus Photorhabdus. Australian clinical isolates proved to be related most closely to clinical isolates from the USA, but the two groups were distinct. A novel subspecies, Photorhabdus asymbiotica subsp. australis subsp. nov. (type strain, 9802892T=CIP 108025T=ACM 5210T), is proposed, with the concomitant creation of Photorhabdus asymbiotica subsp. asymbiotica subsp. nov. Analysis of gyrB sequences, coupled with previously published data on DNA-DNA hybridization and PCR-RFLP analysis of the 16S rRNA gene, indicated that there are more than the three subspecies of Photorhabdus luminescens that have been described and confirmed the validity of the previously proposed subdivision of Photorhabdus temperata. Although a non-luminescent, symbiotic isolate clustered consistently with P. asymbiotica in gyrB phylogenetic analyses, DNA-DNA hybridization indicated that this isolate does not belong to the species P. asymbiotica and that there is a clear distinction between symbiotic and clinical species of Photorhabdus.


Subject(s)
Enterobacteriaceae Infections/microbiology , Nematoda/microbiology , Photorhabdus/classification , Photorhabdus/isolation & purification , Adult , Aged , Animals , Australia , Bacterial Proteins/genetics , Bacterial Typing Techniques , DNA Gyrase/genetics , DNA, Bacterial/chemistry , DNA, Ribosomal/chemistry , Female , Genes, rRNA , Humans , Male , Middle Aged , Molecular Sequence Data , Nucleic Acid Hybridization , Photorhabdus/genetics , Photorhabdus/physiology , Phylogeny , RNA, Bacterial/genetics , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Sequence Homology , United States
4.
Int J Syst Evol Microbiol ; 50 Pt 4: 1691-1692, 2000 Jul.
Article in English | MEDLINE | ID: mdl-10939678

ABSTRACT

The modern Latin word rhabdus does belong to the feminine gender. According to Rules 65(2), 12c(1) and 13b of the Bacteriological Code (1990 Revision), the gender of six generic names and the spelling of nine specific and subspecific epithets are proposed to be corrected.


Subject(s)
Bacteria/classification , Terminology as Topic
5.
Int J Syst Bacteriol ; 49 Pt 4: 1645-56, 1999 Oct.
Article in English | MEDLINE | ID: mdl-10555346

ABSTRACT

The taxonomic position of Photorhabdus strains was examined through the results of DNA relatedness (S1 nuclease method) studies associated with the determination of delta Tm, 16S rRNA phylogenetic inferences and phenotypic characterization, including morphological, auxanographic, biochemical and physiological properties. Three genomic species were delineated on a consensus assessment. One of these species corresponded to Photorhabdus luminescens, since strains were at least 50% related to the type strain of this species with delta Tm less than 7 degrees C. The two other species were novel genomic species II and III, which were less than 40% related to each other with delta Tm higher than 9 degrees C. A comparison of the complete 16S rDNA sequences of several representatives of genomic species II and genomic species III revealed that each of them formed a stable lineage independent of the cluster generated by P. luminescens strains. The genomic species differed in their maximum temperatures for growth. A correlation with the ecological origin of the bacterial samples was noticed. The heat-tolerant group I (maximum growth temperature 35-39 degrees C) corresponded to the symbionts of Heterorhabditis bacteriophora groups Brecon and HP88 and Heterorhabditis indica, nematodes living in warm and tropical countries, respectively. Group II (maximum growth temperature 33-35 degrees C) encompassed symbionts from Heterorhabditis megidis, Heterorhabditis zealandica and group NC1 of H. bacteriophora, nematodes isolated in temperate climates. Group III were bacteria isolated from human specimens. Two new species, Photorhabdus temperata sp. nov. (type strain CIP 105563T) and Photorhabdus asymbiotica sp. nov. (type strain ATCC 43950T), are proposed for genomic species II and III, respectively. Species I and II can be separated into sub-groups on the basis of high DNA-DNA relatedness (more than 80% DNA binding with delta Tm < 1.5 degrees C), 16S rDNA branching and phenotypic characters. Therefore, we propose that the two species P. luminescens and P. temperata should be subdivided into subspecies as follows: P. luminescens subsp. luminescens subsp. nov. (type strain ATCC 29999T), P. luminescens subsp. akhurstii subsp. nov. (type strain CIP 105564T), P. luminescens subsp. laumondii subsp. nov. (type strain CIP 105565T) and P. temperata subsp. temperata subsp. nov.


Subject(s)
Photorhabdus/classification , Bacterial Typing Techniques , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Humans , Molecular Sequence Data , Nucleic Acid Hybridization , Phenotype , Photorhabdus/genetics , Photorhabdus/physiology , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
6.
Int J Syst Bacteriol ; 46(4): 1034-41, 1996 Oct.
Article in English | MEDLINE | ID: mdl-8863433

ABSTRACT

Bacterial strains isolated from wide ranges of nematode hosts and geographic sources and strains isolated from human clinical specimens were used to assess the taxonomic structure of the genus Photorhabdus. The following two methods were used: DNA relatedness and phenotypic characterization. Analysis of the DNA relatedness data revealed that all of the strains studied were congeneric and that the genus Photorhabdus is, on the basis of DNA relatedness data, more homogeneous than the other genus of nematode-symbiotic bacteria, the genus Xenorhabdus. In contrast to previous reports, only two DNA relatedness groups were identified in the genus Photorhabdus. These groups corresponded to the symbiotic strains and the clinical strains. There appeared to be some subgroups within the symbiotic strain group on the basis of the interactions of the strains with nematodes, which corresponded to some extent with the DNA relatedness data. However, there were significant ambiguities in the DNA relatedness data, and this group could not be subdivided on the basis of DNA relatedness data or phenotypic data. The distinct functional differences within and between the DNA relatedness groups of symbiotic Photorhabdus strains indicated that there are biologically significant sub-groups within the genus Photorhabdus that cannot be defined at this time. Further investigation of the taxonomy of Photorhabdus by using different approaches and a suitably wide range of strains is recommended. However, it is clear that the clinical strains form a recognizable subgroup within the genus even though no formal subtaxon can be defined at this time.


Subject(s)
DNA, Bacterial/analysis , Enterobacteriaceae/classification , Nematoda/microbiology , Animals , Enterobacteriaceae/genetics , Humans , Phenotype
7.
Appl Environ Microbiol ; 60(1): 120-5, 1994 Jan.
Article in English | MEDLINE | ID: mdl-16349145

ABSTRACT

Phase variation in Xenorhabdus and Photorhabdus spp. has a significant impact on their symbiotic relationship with entomopathogenic nematodes by altering the metabolic by-products upon which the nematodes feed. The preferential retention of the phase I variant by the infective-stage nematode and its better support for nematode reproduction than phase II indicates its importance in the bacterial-nematode interactions. However, there is no obvious role for phase II in these interactions. This study has revealed differences in the respiratory activity between the two phases of Xenorhabdus nematophilus A24 and Photorhabdus luminescens Hm. After experiencing periods of starvation, phase II cells recommenced growth within 2 to 4 h from the addition of nutrients, compared with 14 h for phase I cells, indicating a more efficient nutrient uptake ability in the former. The levels of activity of major respiratory enzymes were 15 to 100% higher in phase II cells from stationary cultures in complex media than in phase I cells. Transmembrane proton motive force measurements were also higher by 20% in phase II under the same conditions. The increased membrane potentials reflect upon the ability of the phase II variant to respond to nutrients, both through growth and nutrient uptake. It is postulated that while phase I cells are better adapted to conditions in the insect and the nematode, phase II cells may be better adapted to conditions in soil as free-living organisms.

8.
Appl Environ Microbiol ; 58(9): 3032-7, 1992 Sep.
Article in English | MEDLINE | ID: mdl-1444417

ABSTRACT

Induction by mitomycin or high-temperature treatment resulted in the production of bacteriocins and phages in both phases of Xenorhabdus nematophilus A24, indicating lysogeny. Phage DNA purified from X. nematophilus A24 hybridized to several fragments of DraI-digested A24 chromosomal DNA, confirming that the phage genome was incorporated into the bacterial chromosome. Bacteriocins and phages were detected in cultures of most other Xenorhabdus spp. after mitomycin or high-temperature treatment. Xenorhabdus luminescens K80 was not lysed by these treatments, and no phages were seen associated with this strain. However, bacteriocins were detected in limited quantities in all Xenorhabdus cultures, including X. luminescens K80, without any induction. X. nematophilus A24 bacteriocins were antagonistic for other Xenorhabdus species but not for A24 or other strains of X. nematophilus.


Subject(s)
Bacteriocins/biosynthesis , Bacteriophages/physiology , Enterobacteriaceae/physiology , Lysogeny , Bacteriocins/isolation & purification , Bacteriocins/pharmacology , Bacteriophages/growth & development , Bacteriophages/isolation & purification , DNA, Viral/isolation & purification , Drug Resistance, Microbial , Enterobacteriaceae/growth & development , Enterobacteriaceae/ultrastructure , Nucleic Acid Hybridization , Suspensions
9.
Appl Environ Microbiol ; 57(9): 2597-601, 1991 Sep.
Article in English | MEDLINE | ID: mdl-1768133

ABSTRACT

Three strains of Xenorhabdus nematophilus (A24, F1, NC116) and strain Dan of Xenorhabdus bovienii were tested to evaluate whether the phase variation observed in these bacteria was in any way connected with plasmids. The plasmid patterns of both phases of A24 and F1 strains were the same, whereas the two NC116 phases had only one band each. No difference was observed between the undigested or digested plasmid patterns of the two phases from the three strains. No plasmid was detected in either phase of strain Dan. The plasmid probes were prepared from the six bands of A24 phase 1. By hybridization studies, three plasmids in two forms (open circular and supercoiled) were detected in the strain A24. Two were estimated at 12 kb, and the smallest was about 4 kb. Attempts to hybridize plasmid probes with either undigested or digested chromosomal DNA of the two phases of strain A24 were unsuccessful. The results suggest that neither a difference in plasmid content nor a plasmid recombination with the chromosome is involved in phase variation. The hybridizations revealed homologous DNA sequences among the three plasmids of strain A24 and among the plasmids of strains such as A24 and NC116, which were isolated from geographically distant countries, suggesting that plasmids may encode similar proteins.


Subject(s)
Enterobacteriaceae/genetics , Genetic Variation , Plasmids , Chromosomes, Bacterial , DNA, Bacterial/chemistry , Enterobacteriaceae/growth & development , Nucleic Acid Hybridization , Sequence Homology, Nucleic Acid
10.
J Gen Microbiol ; 134(7): 1835-45, 1988 Jul.
Article in English | MEDLINE | ID: mdl-3246587

ABSTRACT

Data from a study of both phases of 21 strains of Xenorhabdus examined for 240 characters were subjected to numerical analysis. Only 60 characters were used for the analyses, since 169 characters were common to all isolates, and the acidification data essentially duplicated the assimilation tests. The data were arranged in seven ways to determine the significance of characters affected by phase change and of weak responses. Most of the analyses involved calculation of similarities by the Jaccard coefficient and clustering by single linkage, complete linkage and centroid sorting algorithms. The resultant dendrograms emphasized the importance of recognizing phase-related characteristics in examining the taxonomy of Xenorhabdus. They also demonstrated a close correspondence between the taxonomic groupings of Xenorhabdus and those of their nematode associates. It is proposed that the subspecies of X. nematophilus be elevated to species, X. nematophilus, X. bovienii, X. poinarii and X. beddingii.


Subject(s)
Enterobacteriaceae/classification , Mathematical Computing , Numerical Analysis, Computer-Assisted , Enterobacteriaceae/metabolism , Methods
SELECTION OF CITATIONS
SEARCH DETAIL
...