Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 5367, 2023 Sep 04.
Article in English | MEDLINE | ID: mdl-37666834

ABSTRACT

Motivated by the recent report of room-temperature superconductivity at near-ambient pressure in N-doped lutetium hydride, we performed a comprehensive, detailed study of the phase diagram of the Lu-N-H system, looking for superconducting phases. We combined ab initio crystal structure prediction with ephemeral data-derived interatomic potentials to sample over 200,000 different structures. Out of the more than 150 structures predicted to be metastable within ~50 meV from the convex hull we identify 52 viable candidates for conventional superconductivity, for which we computed their superconducting properties from Density Functional Perturbation Theory. Although for some of these structures we do predict a finite superconducting Tc, none is even remotely compatible with room-temperature superconductivity as reported by Dasenbrock et al. Our work joins the broader community effort that has followed the report of near-ambient superconductivity, confirming beyond reasonable doubt that no conventional mechanism can explain the reported Tc in Lu-N-H.

2.
J Phys Condens Matter ; 35(44)2023 Aug 03.
Article in English | MEDLINE | ID: mdl-37489863

ABSTRACT

In this paper we present a first-principles study of the high-pressure superconducting phase diagram of calcium alanates (Ca-Al-H), based onab-initiocrystal structure prediction and anisotropic Migdal-Eliashberg Theory. Calcium alanates have been intensively studied at ambient pressure for their hydrogen-storage properties, but their high-pressure behavior is largely unknown. By performing a full scan of the ternary convex hull at several pressures between 0 and 300 GPa, we identify several new structural motifs, characterized by a high Al-H coordination, where Aldorbitals participate in the bonding. Among all new phases thus identified, we focus in particular on a phase with CaAlH7composition, which lies on the convex hull at 300 GPa, and remains dynamically stable down to 50 GPa, with a predicted superconductingTcof 82 K, which likely represents a new promising template to achieve increase chemical precompression in ternary hydrides. Our findings reveal important insights into the structure-property relationships of calcium alanates under high pressure, and highlight a possible strategy to achieve conventional superconductivity at low pressures.

4.
J Phys Condens Matter ; 31(23): 234002, 2019 Jun 12.
Article in English | MEDLINE | ID: mdl-30844781

ABSTRACT

It is a honor to write a contribution on this memorial for Sandro Massidda. For both of us, at different stages in our lives, Sandro was first and foremost a friend. We both admired his humble, playful and profound approach to life and physics. In this contribution we describe the route which permitted to meet a long-standing challenge in solid state physics, i.e. room temperature superconductivity. In less than 20 years the critical temperature of conventional superconductors, which in the last century had been widely believed to be limited to 25 K, was raised from 40 K in MgB2 to 265 K in LaH10. This discovery was enabled by the development and application of computational methods for superconductors, a field in which Sandro Massidda played a major role.

5.
ACS Nano ; 10(1): 515-23, 2016 Jan 26.
Article in English | MEDLINE | ID: mdl-26727335

ABSTRACT

The short coherence lengths characteristic of low-dimensional superconductors are associated with usefully high critical fields or temperatures. Unfortunately, such materials are often sensitive to disorder and suffer from phase fluctuations in the superconducting order parameter which diverge with temperature T, magnetic field H, or current I. We propose an approach to overcome synthesis and fluctuation problems: building superconductors from inhomogeneous composites of nanofilaments. Macroscopic crystals of quasi-one-dimensional Na2-δMo6Se6 featuring Na vacancy disorder (δ ≈ 0.2) are shown to behave as percolative networks of superconducting nanowires. Long-range order is established via transverse coupling between individual one-dimensional filaments, yet phase coherence remains unstable to fluctuations and localization in the zero (T,H,I) limit. However, a region of reentrant phase coherence develops upon raising (T,H,I). We attribute this phenomenon to an enhancement of the transverse coupling due to electron delocalization. Our observations of reentrant phase coherence coincide with a peak in the Josephson energy EJ at nonzero (T,H,I), which we estimate using a simple analytical model for a disordered anisotropic superconductor. Na2-δMo6Se6 is therefore a blueprint for a future generation of nanofilamentary superconductors with inbuilt resilience to phase fluctuations at elevated (T,H,I).

6.
Phys Rev Lett ; 108(3): 036406, 2012 Jan 20.
Article in English | MEDLINE | ID: mdl-22400768

ABSTRACT

We use the Gutzwiller variational theory to calculate the ground-state phase diagram and quasiparticle bands of LaOFeAs. The Fe3d-As4p Wannier-orbital basis obtained from density-functional theory defines the band part of our eight-band Hubbard model. The full atomic interaction between the electrons in the iron orbitals is parametrized by the Hubbard interaction U and an average Hund's-rule interaction J. We reproduce the experimentally observed small ordered magnetic moment over a large region of (U,J) parameter space. The magnetically ordered phase is a stripe spin-density wave of quasiparticles.

7.
Phys Rev Lett ; 93(23): 237002, 2004 Dec 03.
Article in English | MEDLINE | ID: mdl-15601189

ABSTRACT

We substantiate by numerical and analytical calculations that the recently discovered superconductivity below 4 K in 3% boron-doped diamond is caused by electron-phonon coupling of the same type as in MgB2, albeit in three dimensions. Holes at the top of the zone-centered, degenerate sigma-bonding valence-band couple strongly to the optical bond-stretching modes. The increase from two to three dimensions reduces the mode softening crucial for T(c) reaching 40 K in MgB2. Even if diamond had the same bare coupling constant as MgB2, which could be achieved with 10% doping, T(c) would be only 25 K. Superconductivity above 1 K in Si (Ge) requires hole doping beyond 5% (10%).

SELECTION OF CITATIONS
SEARCH DETAIL
...