Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
PLoS One ; 15(1): e0226439, 2020.
Article in English | MEDLINE | ID: mdl-31910443

ABSTRACT

Although many studies have documented the effects of demographic bottlenecks on the genetic diversity of natural populations, there is conflicting evidence of the roles that genetic drift and selection may play in driving changes in genetic variation at adaptive loci. We analyzed genetic variation at microsatellite and mitochondrial loci in conjunction with an adaptive MHC class II locus in the Galápagos penguin (Spheniscus mendiculus), a species that has undergone serial demographic bottlenecks associated with El Niño events through its evolutionary history. We compared levels of variation in the Galápagos penguin to those of its congener, the Magellanic penguin (Spheniscus magellanicus), which has consistently maintained a large population size and thus was used as a non-bottlenecked control. The comparison of neutral and adaptive markers in these two demographically distinct species allowed assessment of the potential role of balancing selection in maintaining levels of MHC variation during bottleneck events. Our analysis suggests that the lack of genetic diversity at both neutral and adaptive loci in the Galápagos penguin likely resulted from its restricted range, relatively low abundance, and history of demographic bottlenecks. The Galápagos penguin revealed two MHC alleles, one mitochondrial haplotype, and six alleles across five microsatellite loci, which represents only a small fraction of the diversity detected in Magellanic penguins. Despite the decreased genetic diversity in the Galápagos penguin, results revealed signals of balancing selection at the MHC, which suggest that selection can mitigate some of the effects of genetic drift during bottleneck events. Although Galápagos penguin populations have persisted for a long time, increased frequency of El Niño events due to global climate change, as well as the low diversity exhibited at immunological loci, may put this species at further risk of extinction.


Subject(s)
Genetic Drift , Genetic Variation , Genetics, Population , Histocompatibility Antigens Class II/genetics , Selection, Genetic , Spheniscidae/genetics , Animals , DNA, Mitochondrial/genetics , Demography , Evolution, Molecular , Genotype , Microsatellite Repeats , Spheniscidae/classification
3.
Conserv Biol ; 29(1): 31-41, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25102756

ABSTRACT

Cumulative human impacts across the world's oceans are considerable. We therefore examined a single model taxonomic group, the penguins (Spheniscidae), to explore how marine species and communities might be at risk of decline or extinction in the southern hemisphere. We sought to determine the most important threats to penguins and to suggest means to mitigate these threats. Our review has relevance to other taxonomic groups in the southern hemisphere and in northern latitudes, where human impacts are greater. Our review was based on an expert assessment and literature review of all 18 penguin species; 49 scientists contributed to the process. For each penguin species, we considered their range and distribution, population trends, and main anthropogenic threats over the past approximately 250 years. These threats were harvesting adults for oil, skin, and feathers and as bait for crab and rock lobster fisheries; harvesting of eggs; terrestrial habitat degradation; marine pollution; fisheries bycatch and resource competition; environmental variability and climate change; and toxic algal poisoning and disease. Habitat loss, pollution, and fishing, all factors humans can readily mitigate, remain the primary threats for penguin species. Their future resilience to further climate change impacts will almost certainly depend on addressing current threats to existing habitat degradation on land and at sea. We suggest protection of breeding habitat, linked to the designation of appropriately scaled marine reserves, including in the High Seas, will be critical for the future conservation of penguins. However, large-scale conservation zones are not always practical or politically feasible and other ecosystem-based management methods that include spatial zoning, bycatch mitigation, and robust harvest control must be developed to maintain marine biodiversity and ensure that ecosystem functioning is maintained across a variety of scales.


Subject(s)
Climate Change , Conservation of Natural Resources , Ecosystem , Environmental Pollution/adverse effects , Fisheries , Spheniscidae/physiology , Animals , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...