Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Toxicol Sci ; 128(2): 301-16, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22588462

ABSTRACT

A physiologically based biokinetic (PBBK) model for the alkenylbenzene safrole in humans was developed based on in vitro- and in silico-derived kinetic parameters. With the model obtained, the time- and dose-dependent formation of the proximate and ultimate carcinogenic metabolites, 1-hydroxysafrole and 1-sulfooxysafrole in human liver were estimated and compared with previously predicted levels of these metabolites in rat liver. In addition, Monte Carlo simulations were performed to predict interindividual variation in the formation of these metabolites in the overall population. For the evaluation of the model performance, a comparison was made between the predicted total amount of urinary metabolites of safrole and the reported total levels of metabolites in the urine of humans exposed to safrole, which adequately matched. The model results revealed no dose-dependent shifts in safrole metabolism and no relative increase in bioactivation at dose levels up to 100mg/kg body weight/day. Species differences were mainly observed in the detoxification pathways of 1-hydroxysafrole, with the formation of 1-oxosafrole being a main detoxification pathway of 1-hydroxysafrole in humans but a minor pathway in rats, and glucuronidation of 1-hydroxysafrole being less important in humans than in rats. The formation of 1-sulfooxysafrole was predicted to vary 4- to 17-fold in the population (fold difference between the 95th and median, and 95th and 5th percentile, respectively), with the median being three to five times higher in human than in rat liver. Comparison of the PBBK results for safrole with those previously obtained for the related alkenylbenzenes estragole and methyleugenol revealed that differences in 1-sulfooxy metabolite formation are limited, being only twofold to fivefold.


Subject(s)
Models, Molecular , Safrole/pharmacokinetics , Animals , Biotransformation , Chromatography, High Pressure Liquid , Humans , Male , Rats
2.
Toxicol Appl Pharmacol ; 260(3): 271-84, 2012 May 01.
Article in English | MEDLINE | ID: mdl-22445790

ABSTRACT

This study defines a physiologically based kinetic (PBK) model for methyleugenol (ME) in human based on in vitro and in silico derived parameters. With the model obtained, bioactivation and detoxification of methyleugenol (ME) at different doses levels could be investigated. The outcomes of the current model were compared with those of a previously developed PBK model for methyleugenol (ME) in male rat. The results obtained reveal that formation of 1'-hydroxymethyleugenol glucuronide (1'HMEG), a major metabolic pathway in male rat liver, appears to represent a minor metabolic pathway in human liver whereas in human liver a significantly higher formation of 1'-oxomethyleugenol (1'OME) compared with male rat liver is observed. Furthermore, formation of 1'-sulfooxymethyleugenol (1'HMES), which readily undergoes desulfonation to a reactive carbonium ion (CA) that can form DNA or protein adducts (DA), is predicted to be the same in the liver of both human and male rat at oral doses of 0.0034 and 300 mg/kg bw. Altogether despite a significant difference in especially the metabolic pathways of the proximate carcinogenic metabolite 1'-hydroxymethyleugenol (1'HME) between human and male rat, the influence of species differences on the ultimate overall bioactivation of methyleugenol (ME) to 1'-sulfooxymethyleugenol (1'HMES) appears to be negligible. Moreover, the PBK model predicted the formation of 1'-sulfooxymethyleugenol (1'HMES) in the liver of human and rat to be linear from doses as high as the benchmark dose (BMD10) down to as low as the virtual safe dose (VSD). This study shows that kinetic data do not provide a reason to argue against linear extrapolation from the rat tumor data to the human situation.


Subject(s)
Computer Simulation , Eugenol/analogs & derivatives , Microsomes, Liver/metabolism , Models, Biological , Administration, Oral , Animals , DNA Adducts/metabolism , Dose-Response Relationship, Drug , Eugenol/administration & dosage , Eugenol/pharmacokinetics , Eugenol/toxicity , Female , Humans , Male , Rats , Species Specificity
3.
Chem Biol Interact ; 192(1-2): 87-95, 2011 Jun 30.
Article in English | MEDLINE | ID: mdl-20863818

ABSTRACT

The present paper focuses on the biological reactive intermediates formed from two categories of botanical ingredients: flavonoids and alkenylbenzenes. The paper especially presents an overview of three concepts in bioactivation studies on flavonoids and alkenylbenzenes elucidated by our recent studies. These new concepts include (i) the fact that reactive electrophilic quinone/quinone methide type metabolites of flavonoids may be the intermediates required for the induction of the beneficial gene expression through electrophile responsive element (EpRE)-mediated pathways, pointing at a possible beneficial effect of a reactive intermediate, (ii) the development of physiologically based kinetic (PBK) and physiologically based dynamic (PBD) models providing a new way to obtain insight in levels of formation of biologically reactive and unstable intermediates in vivo at high but also more realistic low dose levels, and (iii) the concept of the matrix effect that should be taken into account when studying the bioactivation of food-borne genotoxic carcinogens including the alkenylbenzenes, the bioactivation of which was shown to be inhibited by flavonoids. Together the results presented reveal that by studying the mode of action (MOA) new concepts in bioactivation studies of importance for future risk assessment and/or risk-benefit assessment of the flavonoids and alkenylbenzenes are obtained.


Subject(s)
Benzene/pharmacokinetics , Biotransformation , Flavonoids/pharmacokinetics , Flavonoids/pharmacology , Gene Expression/drug effects , Models, Biological
4.
Toxicol In Vitro ; 25(1): 267-85, 2011 Feb.
Article in English | MEDLINE | ID: mdl-20828604

ABSTRACT

The present study defines a physiologically based biokinetic (PBBK) model for the alkenylbenzene methyleugenol in rat based on in vitro metabolic parameters determined using relevant tissue fractions, in silico derived partition coefficients, and physiological parameters derived from the literature. The model was based on the model previously developed for the related alkenylbenzene estragole and consists of eight compartments including liver, lung, and kidney as metabolizing compartments, and separate compartments for fat, arterial blood, venous blood, richly perfused and slowly perfused tissues. Evaluation of the model was performed by comparing the PBBK predicted concentration of methyleugenol in the venous compartment to methyleugenol plasma levels reported in the literature, by comparing the PBBK predicted dose-dependent percentage of formation of 2-hydroxy-4,5-dimethoxyallylbenzene, 3-hydroxy-4-methoxyallylbenzene, and 1'-hydroxymethyleugenol glucuronide to the corresponding percentage of metabolites excreted in urine reported in the literature, which were demonstrated to be in the same order of magnitude. With the model obtained the relative extent of bioactivation and detoxification of methyleugenol at different oral doses was examined. At low doses, formation of 3-(3,4-dimethoxyphenyl)-2-propen-1-ol and methyleugenol-2',3'-oxide leading to detoxification appear to be the major metabolic pathways, occurring in the liver. At high doses, the model reveals a relative increase in the formation of the proximate carcinogenic metabolite 1'-hydroxymethyleugenol, occurring in the liver. This relative increase in formation of 1'-hydroxymethyleugenol leads to a relative increase in formation of 1'-hydroxymethyleugenol glucuronide, 1'-oxomethyleugenol, and 1'-sulfooxymethyleugenol the latter being the ultimate carcinogenic metabolite of methyleugenol. These results indicate that the relative importance of different metabolic pathways of methyleugenol may vary in a dose-dependent way, leading to a relative increase in bioactiviation of methyleugenol at higher doses.


Subject(s)
Alkenes/chemistry , Carcinogens/metabolism , Carcinogens/pharmacokinetics , Eugenol/analogs & derivatives , Microsomes, Liver/metabolism , Models, Biological , Mutagens/metabolism , Mutagens/pharmacokinetics , Animals , Biocatalysis , Biotransformation , Carcinogens/administration & dosage , Computational Biology , Dose-Response Relationship, Drug , Eugenol/administration & dosage , Eugenol/metabolism , Eugenol/pharmacokinetics , Expert Systems , Female , Kinetics , Male , Mutagens/administration & dosage , Rats , Rats, Inbred F344 , Rats, Sprague-Dawley , Sex Characteristics , Species Specificity
5.
Drug Metab Dispos ; 38(4): 617-25, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20056724

ABSTRACT

Phase II metabolism by UDP-glucuronosyltransferases (UGTs) and sulfotransferases (SULTs) is the predominant metabolic pathway during the first-pass metabolism of hesperetin (4'-methoxy-3',5,7-trihydroxyflavanone). In the present study, we have determined the kinetics for glucuronidation and sulfonation of hesperetin by 12 individual UGT and 12 individual SULT enzymes as well as by human or rat small intestinal, colonic, and hepatic microsomal and cytosolic fractions. Results demonstrate that hesperetin is conjugated at positions 7 and 3' and that major enzyme-specific differences in kinetics and regioselectivity for the UGT and SULT catalyzed conjugations exist. UGT1A9, UGT1A1, UGT1A7, UGT1A8, and UGT1A3 are the major enzymes catalyzing hesperetin glucuronidation, the latter only producing 7-O-glucuronide, whereas UGT1A7 produced mainly 3'-O-glucuronide. Furthermore, UGT1A6 and UGT2B4 only produce hesperetin 7-O-glucuronide, whereas UGT1A1, UGT1A8, UGT1A9, UGT1A10, UGT2B7, and UGT2B15 conjugate both positions. SULT1A2 and SULT1A1 catalyze preferably and most efficiently the formation of hesperetin 3'-O-sulfate, and SULT1C4 catalyzes preferably and most efficiently the formation of hesperetin 7-O-sulfate. Based on expression levels SULT1A3 and SULT1B1 also will probably play a role in the sulfo-conjugation of hesperetin in vivo. The results help to explain discrepancies in metabolite patterns determined in tissues or systems with different expression of UGTs and SULTs, e.g., hepatic and intestinal fractions or Caco-2 cells. The incubations with rat and human tissue samples support an important role for intestinal cells during first-pass metabolism in the formation of hesperetin 3'-O-glucuronide and 7-O-glucuronide, which appear to be the major hesperetin metabolites found in vivo.


Subject(s)
Glucuronosyltransferase/metabolism , Hesperidin/pharmacokinetics , Sulfotransferases/metabolism , Animals , Biotransformation , Cell Line , Chromatography, High Pressure Liquid , Colon/metabolism , Cytosol/enzymology , Cytosol/metabolism , DNA, Complementary/biosynthesis , DNA, Complementary/genetics , Glucosides/metabolism , Humans , In Vitro Techniques , Insecta , Intestine, Small/metabolism , Kinetics , Liver/metabolism , Magnetic Resonance Spectroscopy , Male , Microsomes, Liver/enzymology , Microsomes, Liver/metabolism , Rats , Rats, Sprague-Dawley , Sulfates/metabolism , Transfection
6.
Toxicol Sci ; 113(2): 337-48, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19920071

ABSTRACT

The present study investigates interindividual variation in liver levels of the proximate carcinogenic metabolite of estragole, 1'-hydroxyestragole, due to variation in two key metabolic reactions involved in the formation and detoxification of this metabolite, namely 1'-hydroxylation of estragole and oxidation of 1'-hydroxyestragole. Formation of 1'-hydroxyestragole is predominantly catalyzed by P450 1A2, 2A6, and 2E1, and results of the present study support that oxidation of 1'-hydroxyestragole is catalyzed by 17beta-hydroxysteroid dehydrogenase type 2 (17beta-HSD2). In a first approach, the study defines physiologically based biokinetic (PBBK) models for 14 individual human subjects, revealing a 1.8-fold interindividual variation in the area under the liver concentration-time curve (AUC) for 1'-hydroxyestragole within this group of human subjects. Variation in oxidation of 1'-hydroxyestragole by 17beta-HSD2 was shown to result in larger effects than those caused by variation in P450 enzyme activity. In a second approach, a Monte Carlo simulation was performed to evaluate the extent of variation in liver levels of 1'-hydroxyestragole that could occur in the population as a whole. This analysis could be used to derive a chemical-specific adjustment factor (CSAF), which is defined as the 99th percentile divided by the 50th percentile of the predicted distribution of the AUC of 1'-hydroxyestragole in the liver. The CSAF was estimated to range between 1.6 and 4.0, depending on the level of variation that was taken into account for oxidation of 1'-hydroxyestragole. Comparison of the CSAF to the default uncertainty factor of 3.16 for human variability in biokinetics reveals that the default uncertainty factor adequately protects 99% of the population.


Subject(s)
Anisoles/metabolism , Carcinogens/metabolism , Flavoring Agents/metabolism , Liver/metabolism , Allylbenzene Derivatives , Anisoles/pharmacokinetics , Carcinogens/pharmacokinetics , Cytochrome P-450 Enzyme System/metabolism , Flavoring Agents/pharmacokinetics , Humans , Microsomes, Liver/metabolism , Models, Chemical , Monte Carlo Method , Oxidation-Reduction
7.
Toxicol Sci ; 110(2): 255-69, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19447879

ABSTRACT

The extent of bioactivation of the herbal constituent estragole to its ultimate carcinogenic metabolite 1'-sulfooxyestragole depends on the relative levels of bioactivation and detoxification pathways. The present study investigated the kinetics of the metabolic reactions of both estragole and its proximate carcinogenic metabolite 1'-hydroxyestragole in humans in incubations with relevant tissue fractions. Based on the kinetic data obtained a physiologically based biokinetic (PBBK) model for estragole in human was defined to predict the relative extent of bioactivation and detoxification at different dose levels of estragole. The outcomes of the model were subsequently compared with those previously predicted by a PBBK model for estragole in male rat to evaluate the occurrence of species differences in metabolic activation. The results obtained reveal that formation of 1'-oxoestragole, which represents a minor metabolic route for 1'-hydroxyestragole in rat, is the main detoxification pathway of 1'-hydroxyestragole in humans. Due to a high level of this 1'-hydroxyestragole oxidation pathway in human liver, the predicted species differences in formation of 1'-sulfooxyestragole remain relatively low, with the predicted formation of 1'-sulfooxyestragole being twofold higher in human compared with male rat, even though the formation of its precursor 1'-hydroxyestragole was predicted to be fourfold higher in human. Overall, it is concluded that in spite of significant differences in the relative extent of different metabolic pathways between human and male rat there is a minor influence of species differences on the ultimate overall bioactivation of estragole to 1'-sulfooxyestragole.


Subject(s)
Anisoles/pharmacokinetics , Carcinogens/pharmacokinetics , Models, Biological , Toxicity Tests , Allylbenzene Derivatives , Animals , Anisoles/toxicity , Biotransformation , Carcinogens/toxicity , Female , Glucuronides/pharmacokinetics , Humans , Inactivation, Metabolic , Intestine, Small/metabolism , Kidney/metabolism , Lung/metabolism , Male , Microsomes, Liver/metabolism , Rats , Reproducibility of Results , Species Specificity
8.
Toxicol In Vitro ; 22(8): 1890-901, 2008 Dec.
Article in English | MEDLINE | ID: mdl-18840518

ABSTRACT

Coumarin is bioactivated via 3,4-epoxidation resulting in formation of the hepatotoxic o-hydroxyphenylacetaldehyde (oHPA) and detoxified by cytochrome P450 2A6 (CYP2A6) hydroxylation leading to 7-hydroxycoumarin. The present study defines physiologically based biokinetic (PBBK) models to predict liver levels of the toxic oHPA metabolite of coumarin in rats and in human subjects with normal or deficient CYP2A6 catalyzed coumarin 7-hydroxylation. The results reveal that the predicted maximum tissue concentration (C(max)) of oHPA in the liver of wild type human subjects and of subjects deficient in CYP2A6 catalyzed 7-hydroxylation are, respectively, three and one order of magnitude lower than the values predicted for rat liver. Another difference between CYP2A6 deficient and wild type human subjects is a 500-fold difference in the area under the curve 0-24h (AUC(0-24h)) for the time-dependent oHPA liver concentration pointing at a relative higher percentage of the original dose converted in time through this pathway when CYP2A6 is deficient. For wild type human subjects and the subjects with completely deficient coumarin 7-hydroxylation the AUC(0-24h) values for oHPA in the liver are, respectively, three and one order of magnitude lower than that for rat liver. Even when 7-hydroxylation is deficient, the chances on formation of the hepatotoxic oHPA metabolite will be significantly lower in the liver of humans than those expected in the liver of rats when exposed to a similar dose on a body-weight basis. This conclusion should be taken into account when extrapolating data from experimental studies in sensitive animals, i.e., rats, to the general human population.


Subject(s)
Acetaldehyde/analogs & derivatives , Aryl Hydrocarbon Hydroxylases/metabolism , Coumarins/metabolism , Models, Biological , Acetaldehyde/pharmacokinetics , Acetaldehyde/toxicity , Animals , Area Under Curve , Aryl Hydrocarbon Hydroxylases/genetics , Cytochrome P-450 CYP2A6 , Humans , Hydroxylation , Microsomes, Liver/enzymology , Microsomes, Liver/metabolism , Rats , Species Specificity , Time Factors , Umbelliferones/pharmacokinetics
9.
Toxicol Appl Pharmacol ; 231(2): 248-59, 2008 Sep 01.
Article in English | MEDLINE | ID: mdl-18539307

ABSTRACT

The present study defines a physiologically based biokinetic (PBBK) model for the alkenylbenzene estragole in rat based on in vitro metabolic parameters determined using relevant tissue fractions, in silico derived partition coefficients, and physiological parameters derived from the literature. The model consists of eight compartments including liver, lung and kidney as metabolizing compartments, and additional compartments for fat, arterial blood, venous blood, rapidly perfused tissue and slowly perfused tissue. Evaluation of the model was performed by comparing the PBBK predicted dose-dependent formation of the estragole metabolites 4-allylphenol and 1'-hydroxyestragole glucuronide to literature reported levels of these metabolites, which were demonstrated to be in the same order of magnitude. With the model obtained the relative extent of bioactivation and detoxification of estragole at different oral doses was examined. At low doses formation of 4-allylphenol, leading to detoxification, is observed to be the major metabolic pathway, occurring mainly in the lung and kidney due to formation of this metabolite with high affinity in these organs. Saturation of this metabolic pathway in the lung and kidney leads to a relative increase in formation of the proximate carcinogenic metabolite 1'-hydroxyestragole, occurring mainly in the liver. This relative increase in formation of 1'-hydroxyestragole leads to a relative increase in formation of 1'-hydroxyestragole glucuronide and 1'-sulfooxyestragole the latter being the ultimate carcinogenic metabolite of estragole. These results indicate that the relative importance of different metabolic pathways of estragole may vary in a dose-dependent way, leading to a relative increase in bioactiviation of estragole at higher doses.


Subject(s)
Anisoles/pharmacokinetics , Carcinogens/pharmacokinetics , Models, Biological , Allyl Compounds/metabolism , Allylbenzene Derivatives , Animals , Anisoles/administration & dosage , Anisoles/metabolism , Carcinogens/administration & dosage , Dose-Response Relationship, Drug , Female , Glucuronides/metabolism , Inactivation, Metabolic , Kidney/metabolism , Lung/metabolism , Male , Phenols/metabolism , Rats , Rats, Sprague-Dawley , Rats, Wistar , Sulfones/metabolism , Tissue Distribution
10.
Food Chem Toxicol ; 46(2): 557-66, 2008 Feb.
Article in English | MEDLINE | ID: mdl-17935851

ABSTRACT

This study describes and kinetically models the effect of flavonoid mixtures on PhIP transport through Caco-2 monolayers. Previously it was shown that quercetin, luteolin, naringenin and myricetin increase the apical to basolateral PhIP transport in Caco-2 monolayers. In this study, apigenin was shown to exert a similar effect with an apparent K(i) value of 10.8 microM. Additional experiments revealed that several binary flavonoid mixtures and one mixture containing all five model flavonoids increased the apical to basolateral PhIP transport through the Caco-2 monolayer. Assuming competitive inhibition of the apparent active transporter by the flavonoids and concentration-additivity for their inhibiting effect, the kinetic model previously developed to describe the effect of the individual flavonoids on PhIP transport, could be extended and adequately describes the experimental values obtained for the flavonoid mixtures. We conclude that combinations of flavonoids increase the transport of PhIP and do so by interacting in an additive way with the active transport of PhIP. This flavonoid-mediated increase in PhIP transport through Caco-2 monolayers may point at a possible increased bioavailability of PhIP in the presence of flavonoid mixtures in the in vivo situation. This would imply an adverse effect of these supposed beneficial food ingredients.


Subject(s)
Carcinogens/pharmacokinetics , Flavonoids/pharmacology , Imidazoles/pharmacokinetics , Models, Biological , Biological Transport, Active/drug effects , Caco-2 Cells , Drug Synergism , Humans
11.
Chem Res Toxicol ; 20(12): 1895-902, 2007 Dec.
Article in English | MEDLINE | ID: mdl-17975885

ABSTRACT

Curcumin, an alpha,beta-unsaturated carbonyl compound, reacts with glutathione, leading to the formation of two monoglutathionyl curcumin conjugates. In the present study, the structures of both glutathione conjugates of curcumin were identified by LC-MS and one- and two-dimensional 1H NMR analysis, and their formation in incubations with human intestinal and liver cytosol and purified human glutathione S-transferases and also in human Caco-2 cells was characterized. The results obtained demonstrate the site for glutathione conjugation to be the C1 atom, leading to two diastereoisomeric monoglutathionyl curcumin conjugates (CURSG-1 and CURSG-2). The formation of both glutathionyl conjugates appeared to be reversible. The monoglutathionyl curcumin conjugates decompose with a t1/2 of about 4 h to curcumin and other unidentified degradation products. Both human intestinal and liver cytosol catalyzed curcumin glutathione conjugation. At saturating substrate concentrations, human GSTM1a-1a and GSTA1-1 are shown to be especially active in the formation of CURSG-1, whereas GSTP1-1 and GSTA2-2 have no preference for the formation of CURSG-1 or CURSG-2. GSTT1-1 hardly catalyzes the glutathione conjugation of curcumin. In the Caco-2 human intestinal monolayer transwell model, CURSG-1 and CURSG-2 were formed at a ratio of about 2:1 followed by their excretion, which appeared to be three times higher to the apical (lumen) side than to the basolateral (blood) side. Given that GSTM1a-1a and GSTP1-1 are present in the intestinal epithelial cells, it can be concluded that efficient glutathione conjugation of curcumin may already occur in the enterocytes, followed by an efficient excretion of these glutathione conjugates to the lumen, thereby reducing the bioavailability of (unconjugated) curcumin. In conclusion, the present study identifies the nature of the diastereoisomeric monoglutathionyl curcumin conjugates, CURSG-1 and CURSG-2 formed in biological systems, and reveals that conjugate formation is catalyzed by GSTM1a-1a, GSTA1-1, and/or GSTP1-1 with different stereoselective preference. The formation of glutathione conjugates can already occur during intestinal transport, after which the monoglutathionyl conjugates are efficiently excreted to the intestinal lumen, thereby influencing the bioavailability of curcumin and, as a result, its beneficial biological effects.


Subject(s)
Curcumin/metabolism , Glutathione Transferase/physiology , Glutathione/metabolism , Adult , Aged , Caco-2 Cells , Curcumin/chemistry , Cytosol/enzymology , Cytosol/metabolism , Female , Glutathione/chemistry , Humans , Intestinal Mucosa/metabolism , Intestines/enzymology , Liver/enzymology , Liver/metabolism , Magnetic Resonance Spectroscopy , Male , Metabolic Detoxication, Phase II , Middle Aged , Molecular Structure
12.
Chem Res Toxicol ; 20(5): 798-806, 2007 May.
Article in English | MEDLINE | ID: mdl-17407329

ABSTRACT

Human cytochrome P450 enzymes involved in the bioactivation of estragole to its proximate carcinogen 1'-hydroxyestragole were identified and compared to the enzymes of importance for 1'-hydroxylation of the related alkenylbenzenes methyleugenol and safrole. Incubations with Supersomes revealed that all enzymes tested, except P450 2C8, are intrinsically able to 1'-hydroxylate estragole. Experiments with Gentest microsomes, expressing P450 enzymes to roughly average liver levels, indicated that P450 1A2, 2A6, 2C19, 2D6, and 2E1 might contribute to estragole 1'-hydroxylation in the human liver. Especially P450 1A2 is an important enzyme based on the correlation between P450 1A2 activity and estragole 1'-hydroxylation in human liver microsomal samples and inhibition of estragole 1'-hydroxylation by the P450 1A2 inhibitor alpha-naphthoflavone. Kinetic studies revealed that, at physiologically relevant concentrations of estragole, P450 1A2 and 2A6 are the most important enzymes for bioactivation in the human liver showing enzyme efficiencies (kcat/Km) of, respectively, 59 and 341 min-1 mM-1. Only at relatively high estragole concentrations, P450 2C19, 2D6, and 2E1 might contribute to some extent. Comparison to results from similar studies for safrole and methyleugenol revealed that competitive interactions between estragole and methyleugenol 1'-hydroxylation and between estragole and safrole 1'-hydroxylation are to be expected because of the involvement of, respectively, P450 1A2 and P450 2A6 in the bioactivation of these compounds. Furthermore, poor metabolizer phenotypes in P450 2A6 might diminish the chances on bioactivation of estragole and safrole, whereas lifestyle factors increasing P450 1A2 activities such as cigarette smoking and consumption of charbroiled food might increase those chances for estragole and methyleugenol.


Subject(s)
Anisoles/metabolism , Cytochrome P-450 Enzyme System/metabolism , Flavoring Agents/metabolism , Allylbenzene Derivatives , Biotransformation , Chromatography, High Pressure Liquid , Cytochrome P-450 Enzyme System/classification , Enzyme Inhibitors/pharmacology , Eugenol/analogs & derivatives , Eugenol/metabolism , Humans , Hydroxylation , Microsomes, Liver/drug effects , Microsomes, Liver/enzymology , Safrole/metabolism , Substrate Specificity
13.
Chem Biol Interact ; 160(3): 193-203, 2006 Apr 15.
Article in English | MEDLINE | ID: mdl-16516181

ABSTRACT

This study investigates the pro-oxidant activity of 3'- and 4'-O-methylquercetin, two relevant phase II metabolites of quercetin without a functional catechol moiety, which is generally thought to be important for the pro-oxidant activity of quercetin. Oxidation of 3'- and 4'-O-methylquercetin with horseradish peroxidase in the presence of glutathione yielded two major metabolites for each compound, identified as the 6- and 8-glutathionyl conjugates of 3'- and 4'-O-methylquercetin. Thus, catechol-O-methylation of quercetin does not eliminate its pro-oxidant chemistry. Furthermore, the formation of these A-ring glutathione conjugates of 3'- and 4'-O-methylquercetin indicates that quercetin o-quinone may not be an intermediate in the formation of covalent quercetin adducts with glutathione, protein and/or DNA. In additional studies, it was demonstrated that covalent DNA adduct formation by a mixture of [4-(14)C]-3'- and 4'-O-methylquercetin in HepG2 cells amounted to only 42% of the level of covalent adducts formed by a similar amount of [4-(14)C]-quercetin. Altogether, these results reveal the effect of methylation of the catechol moiety of quercetin on its pro-oxidant behavior. Methylation of quercetin does not eliminate but considerably attenuates the cellular implications of the pro-oxidant activity of quercetin, which might add to the mechanisms underlying the apparent lack of in vivo carcinogenicity of this genotoxic compound. The paper also presents a new mechanism for the pro-oxidant chemistry of quercetin, eliminating the requirement for formation of an o-quinone, and explaining why methylation of the catechol moiety does not fully abolish formation of reactive DNA binding metabolites.


Subject(s)
DNA Adducts/metabolism , Glutathione/metabolism , Quercetin/metabolism , Quinones/metabolism , Animals , Antioxidants/chemistry , Antioxidants/metabolism , Horseradish Peroxidase/metabolism , Methylation , Oxidation-Reduction , Quinones/chemistry , Rats , Structure-Activity Relationship
14.
Chem Res Toxicol ; 19(1): 111-6, 2006 Jan.
Article in English | MEDLINE | ID: mdl-16411663

ABSTRACT

In vitro studies were performed to elucidate the human cytochrome P450 enzymes involved in the bioactivation of methyleugenol to its proximate carcinogen 1'-hydroxymethyleugenol. Incubations with Supersomes, expressing individual P450 enzymes to a high level, revealed that P450 1A2, 2A6, 2C9, 2C19, and 2D6 are intrinsically able to 1'-hydroxylate methyleugenol. An additional experiment with Gentest microsomes, expressing the same individual enzymes to roughly average liver levels, indicated that P450 1A2, 2C9, 2C19, and 2D6 contribute to methyleugenol 1'-hydroxylation in the human liver. A study, in which correlations between methyleugenol 1'-hydroxylation in human liver microsomes from 15 individuals and the conversion of enzyme specific substrates by the same microsomes were investigated, showed that P450 1A2 and P450 2C9 are important enzymes in the bioactivation of methyleugenol. This was confirmed in an inhibition study in which pooled human liver microsomes were incubated with methyleugenol in the presence and absence of enzyme specific inhibitors. Kinetic studies revealed that at physiologically relevant concentrations of methyleugenol P450 1A2 is the most important enzyme for bioactivation of methyleugenol in the human liver showing an enzyme efficiency (kcat/Km) that is approximately 30, 50, and > 50 times higher than the enzyme efficiencies of, respectively, P450 2C9, 2C19, and 2D6. Only when relatively higher methyleugenol concentrations are present P450 2C9 and P450 2C19 might contribute as well to the bioactivation of methyleugenol in the human liver. A 5-fold difference in activities was found between the 15 human liver microsomes of the correlation study (range, 0.89-4.30 nmol min(-1) nmol P450(-1)). Therefore, interindividual differences might cause variation in sensitivity toward methyleugenol. Especially lifestyle factors such as smoking (induces P450 1A) and the use of barbiturates (induces P450 2C) can increase the susceptibility for adverse effects of methyleugenol.


Subject(s)
Carcinogens/metabolism , Cytochrome P-450 Enzyme System/metabolism , Eugenol/analogs & derivatives , Flavoring Agents/metabolism , Aryl Hydrocarbon Hydroxylases/antagonists & inhibitors , Aryl Hydrocarbon Hydroxylases/metabolism , Benzoflavones/pharmacology , Biotransformation , Cell Line , Cytochrome P-450 CYP1A2/metabolism , Cytochrome P-450 CYP1A2 Inhibitors , Cytochrome P-450 CYP2C19 , Cytochrome P-450 CYP2C9 , Cytochrome P-450 Enzyme Inhibitors , Cytochrome P-450 Enzyme System/genetics , Enzyme Inhibitors/pharmacology , Eugenol/metabolism , Humans , In Vitro Techniques , Kinetics , Microsomes, Liver/drug effects , Microsomes, Liver/enzymology , Mixed Function Oxygenases , Recombinant Proteins/metabolism , Risk Assessment , Sulfaphenazole/pharmacology
15.
Mutat Res ; 574(1-2): 124-38, 2005 Jul 01.
Article in English | MEDLINE | ID: mdl-15914212

ABSTRACT

The present review focuses on the mechanisms of mutagenic action and the carcinogenic risk of two categories of botanical ingredients, namely the flavonoids with quercetin as an important bioactive representative, and the alkenylbenzenes, namely safrole, methyleugenol and estragole. For quercetin a metabolic pathway for activation to DNA-reactive species may include enzymatic and/or chemical oxidation of quercetin to quercetin ortho-quinone, followed by isomerisation of the ortho-quinone to quinone methides. These quinone methides are suggested to be the active alkylating DNA-reactive intermediates. Recent results have demonstrated the formation of quercetin DNA adducts in exposed cells in vitro. The question that remains to be answered is why these genotoxic characteristics of quercetin are not reflected by carcinogenicity. This might in part be related to the transient nature of quercetin quinone methide adducts, and suggests that stability and/or repair of DNA adducts may need increased attention in in vitro genotoxicity studies. Thus, in vitro mutagenicity studies should put more emphasis on the transient nature of the DNA adducts responsible for the mutagenicity in vitro, since this transient nature of the formed DNA adducts may play an essential role in whether the genotoxicity observed in vitro will have any impact in vivo. For alkenylbenzenes the ultimate electrophilic and carcinogenic metabolites are the carbocations formed upon degradation of their 1'-sulfooxy derivatives, so bioactivation of the alkenylbenzenes to their ultimate carcinogens requires the involvement of cytochromes P450 and sulfotransferases. Identification of the cytochrome P450 isoenzymes involved in bioactivation of the alkenylbenzenes identifies the groups within the population possibly at increased risk, due to life style factors or genetic polymorphisms leading to rapid metaboliser phenotypes. Furthermore, toxicokinetics for conversion of the alkenylbenzenes to their carcinogenic metabolites and kinetics for repair of the DNA adducts formed provide other important aspects that have to be taken into account in the high to low dose risk extrapolation in the risk assessment on alkenylbenzenes. Altogether the present review stresses that species differences and mechanistic data have to be taken into account and that new mechanism- and toxicokinetic-based methods and models are required for cancer risk extrapolation from high dose experimental animal data to low dose carcinogenic risks for man.


Subject(s)
Allyl Compounds/pharmacology , Carcinogens/pharmacology , Eugenol/analogs & derivatives , Flavonoids/pharmacology , Mutagens/pharmacology , Allylbenzene Derivatives , Animals , Anisoles/pharmacology , Eugenol/pharmacology , Quercetin/chemistry , Quercetin/pharmacology , Rats , Safrole/pharmacology
16.
Mol Nutr Food Res ; 49(2): 131-58, 2005 Feb.
Article in English | MEDLINE | ID: mdl-15635687

ABSTRACT

At present, there is an increasing interest for plant ingredients and their use in drugs, for teas, or in food supplements. The present review describes the nature and mechanism of action of the phytochemicals presently receiving increased attention in the field of food toxicology. This relates to compounds including aristolochic acids, pyrrolizidine alkaloids, beta-carotene, coumarin, the alkenylbenzenes safrole, methyleugenol and estragole, ephedrine alkaloids and synephrine, kavalactones, anisatin, St. John's wort ingredients, cyanogenic glycosides, solanine and chaconine, thujone, and glycyrrhizinic acid. It can be concluded that several of these phytotoxins cause concern, because of their bioactivation to reactive alkylating intermediates that are able to react with cellular macromolecules causing cellular toxicity, and, upon their reaction with DNA, genotoxicity resulting in tumors. Another group of the phytotoxins presented is active without the requirement for bioactivation and, in most cases, these compounds appear to act as neurotoxins interacting with one of the neurotransmitter systems. Altogether, the examples presented illustrate that natural does not equal safe and that in modern society adverse health effects, upon either acute or chronic exposure to phytochemicals, can occur as a result of use of plant- or herb-based foods, teas, or other extracts.


Subject(s)
Food/toxicity , Plants, Toxic/chemistry , Alkaloids/administration & dosage , Alkaloids/toxicity , Alkenes/administration & dosage , Alkenes/toxicity , Aristolochic Acids/administration & dosage , Aristolochic Acids/toxicity , Coumarins/administration & dosage , Coumarins/toxicity , Enzymes/genetics , Ephedra , Glycosides/administration & dosage , Glycosides/toxicity , Humans , Hypericum , Kava , Lactones/administration & dosage , Lactones/toxicity , Polymorphism, Genetic , Synephrine/administration & dosage , Synephrine/toxicity , beta Carotene/administration & dosage , beta Carotene/toxicity
17.
Chem Res Toxicol ; 17(11): 1520-30, 2004 Nov.
Article in English | MEDLINE | ID: mdl-15540950

ABSTRACT

In this study, the HPLC, UV-vis, LC-MS, and 1H NMR characteristics of 14 different phase II mono- and mixed conjugates of quercetin were determined, providing a useful tool in the identification of quercetin phase II metabolite patterns in various biological systems. Using these data, the phase II metabolism of quercetin by different rat and human liver and intestine in vitro models, including cell lines, S9 samples, and hepatocytes, was investigated. A comparison of quercetin phase II metabolism between rat and human liver and intestinal cell lines, S9, and hepatocytes showed considerable variation in the nature and ratios of quercetin conjugate formation. It could be established that the intestine contributes significantly to the phase II metabolism of quercetin, especially to its sulfation, that organ-dependent phase II metabolism in rat and man differ significantly, and that human interindividual variation is higher for quercetin sulfation than for glucuronidation or methylation. Furthermore, quercetin conjugation by different in vitro models from corresponding origins may differ significantly. The identification of the various mono- and mixed quercetin phase II conjugates revealed significant differences in phase II conjugation by a variety of in vitro models and led to the conclusion that none of the in vitro models converted quercetin to a phase II metabolite mixture similar to the in vivo plasma metabolite pattern of quercetin. Altogether, the identification of a wide range of phase II metabolites of quercetin as presented in this study allows the determination of quercetin phase II biotransformation patterns and opens the way for a better-funded assessment of the biological activity of quercetin in a variety of biological systems.


Subject(s)
Microsomes, Liver/metabolism , Models, Biological , Quercetin/analogs & derivatives , Quercetin/metabolism , Animals , Cell Line, Tumor , Cell Survival/drug effects , Chromatography, High Pressure Liquid , Hepatocytes/drug effects , Hepatocytes/metabolism , Humans , Intestinal Mucosa/metabolism , Intestines/drug effects , Magnetic Resonance Spectroscopy , Microsomes, Liver/drug effects , Quercetin/toxicity , Rats , Spectrometry, Mass, Electrospray Ionization , Subcellular Fractions
18.
Chem Res Toxicol ; 17(9): 1245-50, 2004 Sep.
Article in English | MEDLINE | ID: mdl-15377158

ABSTRACT

In the present study, the cytochrome P450 mediated bioactivation of safrole to its proximate carcinogenic metabolite, 1'-hydroxysafrole, has been investigated for the purpose of identifying the human P450 enzymes involved. The 1'-hydroxylation of safrole was characterized in a variety of in vitro test systems, including Supersomes, expressing individual human P450 enzymes to a high level, and microsomes derived from cell lines expressing individual human P450 enzymes to a lower, average human liver level. Additionally, a correlation study was performed, in which safrole was incubated with a series of 15 human liver microsomes, and the 1'-hydroxylation rates obtained were correlated with the activities of these microsomes toward specific substrates for nine different isoenzymes. To complete the study, a final experiment was performed in which pooled human liver microsomes were incubated with safrole in the presence and absence of coumarin, a selective P450 2A6 substrate. On the basis of the results of these experiments, important roles for P450 2C9*1, P450 2A6, P450 2D6*1, and P450 2E1 were elucidated. The possible consequences of these results for the effects of genetic polymorphisms and life style factors on the bioactivation of safrole are discussed. Polymorphisms in P450 2C9, P450 2A6, and P450 2D6, leading to poor metabolizer phenotypes, may reduce the relative risk on the harmful effects of safrole, whereas life style factors, such as the use of alcohol, an inducer of P450 2E1, and barbiturates, inducers of P450 2C9, and polymorphisms in P450 2D6 and P450 2A6, leading to ultraextensive metabolizer phenotypes, may increase the relative risk.


Subject(s)
Cytochrome P-450 Enzyme System/classification , Cytochrome P-450 Enzyme System/metabolism , Safrole/analogs & derivatives , Safrole/metabolism , Biotransformation , Carcinogens/metabolism , Humans , In Vitro Techniques , Microsomes, Liver/enzymology , Risk Assessment , Statistics, Nonparametric , Substrate Specificity
19.
Free Radic Res ; 38(6): 639-47, 2004 Jun.
Article in English | MEDLINE | ID: mdl-15346655

ABSTRACT

The biological effect of flavonoids can be modulated in vivo due to metabolism. The O-methylation of the catechol group in the molecule by catechol O-methyl transferase is one of the important metabolic pathways of flavonoids. In the present study, the consequences of catechol O-methylation for the pH-dependent radical scavenging properties of quercetin and luteolin were characterized both experimentally and theoretically. Comparison of the pKa values to the pH-dependent TEAC profiles reveals that O-methylation not only affects the TEAC as such but also modulates the effect of changing pH on this radical scavenging activity due to an effect on the pKa for deprotonation. The pH-dependent TEAC curves and computer calculated electronic parameters: bond dissociation energy (BDE) and ionisation potential (IP) even indicate that O-methylation of the luteolin catechol group affects the radical scavenging potential only because it shifts the pKa for deprotonation. O-Methylation of the quercetin catechol moiety affects radical scavenging capacity by both an effect on the pKa, and also by an effect on the electron and hydrogen atom donating properties of the neutral (N) and the anionic (A) form of the molecule. Moreover, O-methylation of a catechol OH-group in quercetin and luteolin has a similar effect on their TEAC profiles and on calculated parameters as replacement of the OH-group by a hydrogen atom. Altogether, the results presented provide new mechanistic insight in the effect of catechol O-methylation on the radical scavenging characteristics of quercetin and luteolin.


Subject(s)
Catechols/chemistry , Free Radical Scavengers/chemistry , Luteolin/chemistry , Quercetin/chemistry , Antioxidants/chemistry , Antioxidants/metabolism , Apigenin/chemistry , Apigenin/metabolism , Catechols/metabolism , Flavonoids/chemistry , Flavonoids/metabolism , Free Radical Scavengers/metabolism , Hydrogen/chemistry , Hydrogen/metabolism , Hydrogen-Ion Concentration , Kaempferols/chemistry , Kaempferols/metabolism , Luteolin/metabolism , Methylation , Molecular Structure , Quercetin/metabolism
20.
J Ethnopharmacol ; 94(1): 25-41, 2004 Sep.
Article in English | MEDLINE | ID: mdl-15261960

ABSTRACT

The neem tree, Azadirachta indica, provides many useful compounds that are used as pesticides and could be applied to protect stored seeds against insects. However in addition to possible beneficial health effects, such as blood sugar lowering properties, anti-parasitic, anti-inflammatory, anti-ulcer and hepatoprotective effects, also toxic effects are described. In this study we present a review of the toxicological data from human and animal studies with oral administration of different neem-based preparations. The non-aqueous extracts appear to be the most toxic neem-based products, with an estimated safe dose (ESD) of 0.002 and 12.5 microg/kg bw/day. Less toxic are the unprocessed materials seed oil and the aqueous extracts (ESD 0.26 and 0.3 mg/kg bw/day, 2 microl/kg bw/day respectively). Most of the pure compounds show a relatively low toxicity (ESD azadirachtin 15 mg/kg bw/day). For all preparations, reversible effect on reproduction of both male and female mammals seem to be the most important toxic effects upon sub-acute or chronic exposure. From the available data, safety assessments for the various neem-derived preparations were made and the outcomes are compared to the ingestion of residues on food treated with neem preparations as insecticides. This leads to the conclusion that, if applied with care, use of neem derived pesticides as an insecticide should not be discouraged.


Subject(s)
Azadirachta , Pesticides/toxicity , Administration, Oral , Animals , Dose-Response Relationship, Drug , Humans , Lethal Dose 50 , Plant Extracts/toxicity , Plant Oils/toxicity , Risk Assessment
SELECTION OF CITATIONS
SEARCH DETAIL
...