Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Microbiol ; 8(11): 2115-2129, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37814072

ABSTRACT

Antiviral signalling, which can be activated in host cells upon virus infection, restricts virus replication and communicates infection status to neighbouring cells. The antiviral response is heterogeneous, both quantitatively (efficiency of response activation) and qualitatively (transcribed antiviral gene set). To investigate the basis of this heterogeneity, we combined Virus Infection Real-time IMaging (VIRIM), a live-cell single-molecule imaging method, with real-time readouts of the dsRNA sensing pathway to analyse the response of human cells to encephalomyocarditis virus (EMCV) infection. We find that cell-to-cell heterogeneity in viral replication rates early in infection affect the efficiency of antiviral response activation, with lower replication rates leading to more antiviral response activation. Furthermore, we show that qualitatively distinct antiviral responses can be linked to the strength of the antiviral signalling pathway. Our analyses identify variation in early viral replication rates as an important parameter contributing to heterogeneity in antiviral response activation.


Subject(s)
Virus Diseases , Virus Replication , Humans , Signal Transduction , Encephalomyocarditis virus/physiology , Antiviral Agents
3.
Cell ; 183(7): 1930-1945.e23, 2020 12 23.
Article in English | MEDLINE | ID: mdl-33188777

ABSTRACT

RNA viruses are among the most prevalent pathogens and are a major burden on society. Although RNA viruses have been studied extensively, little is known about the processes that occur during the first several hours of infection because of a lack of sensitive assays. Here we develop a single-molecule imaging assay, virus infection real-time imaging (VIRIM), to study translation and replication of individual RNA viruses in live cells. VIRIM uncovered a striking heterogeneity in replication dynamics between cells and revealed extensive coordination between translation and replication of single viral RNAs. Furthermore, using VIRIM, we identify the replication step of the incoming viral RNA as a major bottleneck of successful infection and identify host genes that are responsible for inhibition of early virus replication. Single-molecule imaging of virus infection is a powerful tool to study virus replication and virus-host interactions that may be broadly applicable to RNA viruses.


Subject(s)
Protein Biosynthesis , RNA Viruses/physiology , Virus Replication/physiology , Cell Line, Tumor , Cell Survival , HEK293 Cells , Host-Pathogen Interactions , Humans , Interferons/metabolism , RNA Transport , RNA, Viral/genetics , Reproducibility of Results , Single Molecule Imaging , Time Factors
4.
Nat Protoc ; 15(4): 1371-1398, 2020 04.
Article in English | MEDLINE | ID: mdl-32076351

ABSTRACT

mRNA translation is a key step in gene expression. Proper regulation of translation efficiency ensures correct protein expression levels in the cell, which is essential to cell function. Different methods used to study translational control in the cell rely on population-based assays that do not provide information about translational heterogeneity between cells or between mRNAs of the same gene within a cell, and generally provide only a snapshot of translation. To study translational heterogeneity and measure translation dynamics, we have developed microscopy-based methods that enable visualization of translation of single mRNAs in live cells. These methods consist of a set of genetic tools, an imaging-based approach and sophisticated computational tools. Using the translation imaging method, one can investigate many new aspects of translation in single living cells, such as translation start-site selection, 3'-UTR (untranslated region) translation and translation-coupled mRNA decay. Here, we describe in detail how to perform such experiments, including reporter design, cell line generation, image acquisition and analysis. This protocol also provides a detailed description of the image analysis pipeline and computational modeling that will enable non-experts to correctly interpret fluorescence measurements. The protocol takes 2-4 d to complete (after cell lines expressing all required transgenes have been generated).


Subject(s)
Image Processing, Computer-Assisted/methods , Protein Biosynthesis/genetics , RNA, Messenger/analysis , Single Molecule Imaging/methods , HEK293 Cells , Humans , RNA, Messenger/genetics
5.
Cell ; 178(2): 458-472.e19, 2019 07 11.
Article in English | MEDLINE | ID: mdl-31178119

ABSTRACT

mRNA translation is a key step in decoding genetic information. Genetic decoding is surprisingly heterogeneous because multiple distinct polypeptides can be synthesized from a single mRNA sequence. To study translational heterogeneity, we developed the MoonTag, a fluorescence labeling system to visualize translation of single mRNAs. When combined with the orthogonal SunTag system, the MoonTag enables dual readouts of translation, greatly expanding the possibilities to interrogate complex translational heterogeneity. By placing MoonTag and SunTag sequences in different translation reading frames, each driven by distinct translation start sites, start site selection of individual ribosomes can be visualized in real time. We find that start site selection is largely stochastic but that the probability of using a particular start site differs among mRNA molecules and can be dynamically regulated over time. This study provides key insights into translation start site selection heterogeneity and provides a powerful toolbox to visualize complex translation dynamics.


Subject(s)
Fluorescent Dyes/chemistry , RNA, Messenger/metabolism , Single Molecule Imaging/methods , 3' Untranslated Regions , 5' Untranslated Regions , Cell Line, Tumor , Genes, Reporter , HEK293 Cells , Humans , Peptide Chain Initiation, Translational , RNA, Messenger/chemistry , Ribosomes/metabolism , Single-Domain Antibodies/chemistry , Single-Domain Antibodies/immunology
6.
Mol Cell ; 75(2): 324-339.e11, 2019 07 25.
Article in English | MEDLINE | ID: mdl-31155380

ABSTRACT

Nonsense-mediated decay (NMD) is a surveillance system that degrades mRNAs containing a premature termination codon (PTC) and plays important roles in protein homeostasis and disease. The efficiency of NMD is variable, impacting the clinical outcome of genetic mutations. However, limited resolution of bulk analyses has hampered the study of NMD efficiency. Here, we develop an assay to visualize NMD of individual mRNA molecules in real time. We find that NMD occurs with equal probability during each round of translation of an mRNA molecule. However, this probability is variable and depends on the exon sequence downstream of the PTC, the PTC-to-intron distance, and the number of introns both upstream and downstream of the PTC. Additionally, a subpopulation of mRNAs can escape NMD, further contributing to variation in NMD efficiency. Our study uncovers real-time dynamics of NMD, reveals key mechanisms that influence NMD efficiency, and provides a powerful method to study NMD.


Subject(s)
Codon, Nonsense/genetics , Nonsense Mediated mRNA Decay/genetics , RNA, Messenger/genetics , Codon, Nonsense/chemistry , Exons/genetics , Humans , Introns/genetics , Mutation/genetics , RNA Stability/genetics , RNA, Messenger/chemistry , Single Molecule Imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...