Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 67(10): 8141-8160, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38728572

ABSTRACT

Human interleukin-1ß (IL-1ß) is a pro-inflammatory cytokine that plays a critical role in the regulation of the immune response and the development of various inflammatory diseases. In this publication, we disclose our efforts toward the discovery of IL-1ß binders that interfere with IL-1ß signaling. To this end, several technologies were used in parallel, including fragment-based screening (FBS), DNA-encoded library (DEL) technology, peptide discovery platform (PDP), and virtual screening. The utilization of distinct technologies resulted in the identification of new chemical entities exploiting three different sites on IL-1ß, all of them also inhibiting the interaction with the IL-1R1 receptor. Moreover, we identified lysine 103 of IL-1ß as a target residue suitable for the development of covalent, low-molecular-weight IL-1ß antagonists.


Subject(s)
Interleukin-1beta , Humans , Drug Discovery , Interleukin-1beta/metabolism , Ligands , Receptors, Interleukin-1 Type I/metabolism , Receptors, Interleukin-1 Type I/antagonists & inhibitors , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Structure-Activity Relationship , DNA/chemistry , Gene Library
2.
ACS Chem Biol ; 18(3): 643-651, 2023 03 17.
Article in English | MEDLINE | ID: mdl-36825662

ABSTRACT

The TEAD transcription factors are the most distal elements of the Hippo pathway, and their transcriptional activity is regulated by several proteins, including YAP. In some cancers, the Hippo pathway is deregulated and inhibitors of the YAP:TEAD interaction are foreseen as new anticancer drugs. The binding of YAP to TEAD is driven by the interaction of an α-helix and an Ω-loop present in its TEAD-binding domain with two distinct pockets at the TEAD surface. Using the mRNA-based display technique to screen a library of in vitro-translated cyclic peptides, we identified a peptide that binds with a nanomolar affinity to TEAD. The X-ray structure of this peptide in complex with TEAD reveals that it interacts with the α-helix pocket. Under our experimental conditions, this peptide can form a ternary complex with TEAD and YAP. Furthermore, combining it with a peptide binding to the Ω-loop pocket gives an additive inhibitory effect on the YAP:TEAD interaction. Overall, our results show that it is possible to identify nanomolar inhibitors of the YAP:TEAD interaction that bind to the α-helix pocket, suggesting that developing such compounds might be a strategy to treat cancers where the Hippo pathway is deregulated.


Subject(s)
Neoplasms , Transcription Factors , Humans , Transcription Factors/metabolism , Protein Conformation, alpha-Helical , TEA Domain Transcription Factors , Peptides/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...