Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Chem Biol ; 19(10): 1196-1204, 2023 10.
Article in English | MEDLINE | ID: mdl-37142807

ABSTRACT

Presentation of antigenic peptides by major histocompatibility complex class II (MHC-II) proteins determines T helper cell reactivity. The MHC-II genetic locus displays a large degree of allelic polymorphism influencing the peptide repertoire presented by the resulting MHC-II protein allotypes. During antigen processing, the human leukocyte antigen (HLA) molecule HLA-DM (DM) encounters these distinct allotypes and catalyzes exchange of the placeholder peptide CLIP by exploiting dynamic features of MHC-II. Here, we investigate 12 highly abundant CLIP-bound HLA-DRB1 allotypes and correlate dynamics to catalysis by DM. Despite large differences in thermodynamic stability, peptide exchange rates fall into a target range that maintains DM responsiveness. A DM-susceptible conformation is conserved in MHC-II molecules, and allosteric coupling between polymorphic sites affects dynamic states that influence DM catalysis. As exemplified for rheumatoid arthritis, we postulate that intrinsic dynamic features of peptide-MHC-II complexes contribute to the association of individual MHC-II allotypes with autoimmune disease.


Subject(s)
HLA-D Antigens , HLA-DR Antigens , Humans , HLA-D Antigens/metabolism , HLA-DR Antigens/metabolism , Peptides/chemistry , Antigen Presentation , Catalysis , Protein Binding
2.
Bioorg Med Chem ; 27(19): 115036, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31431326

ABSTRACT

A series of α,ß-unsaturated hydroxamic acid derivatives as novel HDAC inhibitors (HDACi) with structural modifications of the connecting unit and the CAP group was synthesized. The in vitro evaluation against the human cancer cell lines A2780 and Cal27 identified 6e and 7j as the most potent compounds regarding HDAC inhibitory activity and inhibition of proliferation. Isoform profiling against HDAC2, 4, 6 and 8 revealed a preference for HDAC2 and 6 for both compounds in contrast to the pan HDACi panobinostat. 6e and 7j enhanced significantly cisplatin-induced cytotoxicity in a combination treatment mediated by increased apoptosis induction and caspase-3/7 activation. The interaction between 6e or 7j and cisplatin was highly synergistic and more pronounced for the cisplatin resistant subline Cal27CisR. IC50 values of cisplatin were even lower in Cal27CisR pretreated with 6e or 7j than for the parental cell line Cal27. Based on our findings, the novel dual class I/HDAC6 inhibitors could serve as an option to overcome cisplatin resistance with fewer side effects in comparison to panobinostat.


Subject(s)
Antineoplastic Agents/pharmacology , Cisplatin/pharmacology , Drug Resistance, Neoplasm/drug effects , Histone Deacetylase Inhibitors/pharmacology , Hydroxamic Acids/pharmacology , Antineoplastic Agents/chemical synthesis , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor , Drug Synergism , Histone Deacetylase Inhibitors/chemical synthesis , Humans , Hydroxamic Acids/chemical synthesis , Panobinostat/pharmacology , Vorinostat/pharmacology
3.
Sci Rep ; 9(1): 5183, 2019 03 26.
Article in English | MEDLINE | ID: mdl-30914775

ABSTRACT

Mushroom tyrosinase abPPO4 is a commercially relevant polyphenol oxidase and has been being targeted for numerous inhibition studies including polyoxometalates (POMs). In the present work, its diphenolase activity was inhibited at pH 6.8 by a series of structurally related polyoxotungstates (POTs) of the α-Keggin archetype, exhibiting the general formula [Xn+W12O40](8-n)- in order to elucidate charge-dependent activity correlations. Kinetic data were obtained from the dopachrome assay and 183W NMR was applied to obtain crucial insights into the actual Keggin POT speciation in solution, facilitating a straightforward assignment of inhibition effects to the identified POT species. While [PW12O40]3- was completely hydrolyzed to its moderately active lacunary form Hx[PW11O39](7-x)- (Ki = 25.6 mM), [SiW12O40]4- showed the most pronounced inhibition effects with a Ki of 4.7 mM despite of partial hydrolysis to its ineffective lacunary form Hx[SiW11O39](8-x)-. More negative Keggin cluster charges of 5- and 6- generally resulted in preclusion of inhibitory efficacy as well as hydrolysis, but with the Ni-substituted cluster [PW11O39{Ni(H2O)}]5- enzymatic inhibition was clearly restored (Ki = 9.7 mM). The inhibitory capacity of the structurally intact Keggin POTs was found to be inversely correlated to their net charge. The here applied speciation strategy is of utmost importance for any biological POM application to identify the actually active POM species.


Subject(s)
Agaricales/enzymology , Enzyme Inhibitors/pharmacology , Monophenol Monooxygenase/antagonists & inhibitors , Tungsten Compounds/pharmacology , Anions , Hydrogen-Ion Concentration , Hydrolysis , Kinetics , Magnetic Resonance Spectroscopy , Monophenol Monooxygenase/metabolism , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...