Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 7(1): 5979, 2017 07 20.
Article in English | MEDLINE | ID: mdl-28729737

ABSTRACT

HIV-1 Nef is an important pathogenic factor for HIV/AIDS pathogenesis. Studies have shown that the association of Nef with the inner leaflet of the plasma membrane and with endocytic and perinuclear vesicles is essential for most activities of Nef. Using purified recombinant proteins in pull-down assays and by co-immunoprecipitation assays we demonstrate that Nef binds directly and specifically to all GABARAP family members, but not to LC3 family members. Based on nuclear magnetic resonance (NMR) experiments we showed that Nef binds to GABARAP via two surface exposed hydrophobic pockets. S53 and F62 of GABARAP were identified as key residues for the interaction with Nef. During live-cell fluorescence microscopy an accumulation of Nef and all GABARAP family members in vesicular structures throughout the cytoplasm and at the plasma membrane was observed. This plasma membrane accumulation was significantly reduced after knocking down GABARAP, GABARAPL1 and GABARAPL2 with respective siRNAs. We identified GABARAPs as the first known direct interaction partners of Nef that are essential for its plasma membrane localization.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Autophagy-Related Protein 8 Family/metabolism , Cell Membrane/metabolism , HIV-1/metabolism , Microtubule-Associated Proteins/metabolism , nef Gene Products, Human Immunodeficiency Virus/metabolism , Adaptor Proteins, Signal Transducing/chemistry , Amino Acid Sequence , Apoptosis Regulatory Proteins , Autophagy-Related Protein 8 Family/chemistry , Binding Sites , Cell Extracts , Conserved Sequence , HEK293 Cells , Humans , Hydrophobic and Hydrophilic Interactions , Ligands , Microtubule-Associated Proteins/chemistry , Protein Binding , Protein Transport , RNA, Small Interfering/metabolism
2.
J Biol Chem ; 288(52): 37204-15, 2013 Dec 27.
Article in English | MEDLINE | ID: mdl-24240096

ABSTRACT

Apoptosis and autophagy are fundamental homeostatic processes in eukaryotic organisms fulfilling essential roles in development and adaptation. Recently, the anti-apoptotic factor Bcl-2 has been reported to also inhibit autophagy, thus establishing a potential link between these pathways, but the mechanistic details are only beginning to emerge. Here we show that Bcl-2 directly binds to the phagophore-associated protein GABARAP. NMR experiments revealed that the interaction critically depends on a three-residue segment (EWD) of Bcl-2 adjacent to the BH4 region, which is anchored to one of the two hydrophobic pockets on the GABARAP molecule. This is at variance with the majority of GABARAP interaction partners identified previously, which occupy both hydrophobic pockets simultaneously. Bcl-2 affinity could also be detected for GEC1, but not for other mammalian Atg8 homologs. Finally, we provide evidence that overexpression of Bcl-2 inhibits lipidation of GABARAP, a key step in autophagosome formation, possibly via competition with the lipid conjugation machinery. These results support the regulatory role of Bcl-2 in autophagy and define GABARAP as a novel interaction partner involved in this intricate connection.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Autophagy/physiology , Cytoskeletal Proteins/metabolism , Lipoylation/physiology , Membrane Proteins/metabolism , Microtubule-Associated Proteins/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Adaptor Proteins, Signal Transducing/chemistry , Adaptor Proteins, Signal Transducing/genetics , Amino Acid Motifs , Animals , Apoptosis/physiology , Apoptosis Regulatory Proteins , Cell Line, Transformed , Cytoskeletal Proteins/chemistry , Cytoskeletal Proteins/genetics , Humans , Hydrophobic and Hydrophilic Interactions , Membrane Proteins/chemistry , Membrane Proteins/genetics , Mice , Microtubule-Associated Proteins/chemistry , Microtubule-Associated Proteins/genetics , Nuclear Magnetic Resonance, Biomolecular , Protein Binding , Protein Structure, Quaternary , Protein Structure, Tertiary , Proto-Oncogene Proteins c-bcl-2/chemistry , Proto-Oncogene Proteins c-bcl-2/genetics , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...