Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Main subject
Publication year range
1.
Sensors (Basel) ; 23(22)2023 Nov 16.
Article in English | MEDLINE | ID: mdl-38005607

ABSTRACT

This paper presents the complete design, fabrication, and characterization of a shallow-mesa photodiode for short-wave infra-red (SWIR) sensing. We characterized and demonstrated photodiodes collecting 1.55 µm photons with a pixel pitch as small as 3 µm. For a 5 µm pixel pitch photodiode, we measured the external quantum efficiency reaching as high as 54%. With substrate removal and an ideal anti-reflective coating, we estimated the internal quantum efficiency as achieving 77% at 1.55 µm. The best measured dark current density reached 5 nA/cm2 at -0.1 V and at 23 °C. The main contributors responsible for this dark current were investigated through the study of its evolution with temperature. We also highlight the importance of passivation with a perimetric contribution analysis and the correlation between MIS capacitance characterization and dark current performance.

2.
Opt Lett ; 48(4): 867, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36790961

ABSTRACT

This publisher's note contains corrections to Opt. Lett.47, 6201 (2022)10.1364/OL.471241.

3.
Nat Commun ; 13(1): 7443, 2022 Dec 09.
Article in English | MEDLINE | ID: mdl-36494365

ABSTRACT

A phototransistor is a promising candidate as an optical power monitor in Si photonic circuits since the internal gain of photocurrent enables high responsivity. However, state-of-the-art waveguide-coupled phototransistors suffer from a responsivity of lower than 103 A/W, which is insufficient for detecting very low power light. Here, we present a waveguide-coupled phototransistor operating at a 1.3 µm wavelength, which consists of an InGaAs ultrathin channel on a Si waveguide working as a gate electrode to increase the responsivity. The Si waveguide gate underneath the InGaAs ultrathin channel enables the effective control of transistor current without optical absorption by the gate metal. As a result, our phototransistor achieved the highest responsivity of approximately 106 A/W among the waveguide-coupled phototransistors, allowing us to detect light of 621 fW propagating in the Si waveguide. The high responsivity and the reasonable response time of approximately 100 µs make our phototransistor promising as an effective optical power monitor in Si photonic circuits.


Subject(s)
Photons , Electrodes , Reaction Time
4.
Opt Express ; 30(3): 4202-4214, 2022 Jan 31.
Article in English | MEDLINE | ID: mdl-35209662

ABSTRACT

This work presents a "half-etch" horizontal slot waveguide design based on SiN, where only the upper SiN layer is etched to form a strip that confines the mode laterally. The numerical modeling, fabrication, and characterization of passive waveguiding components are described. This novel slot waveguide structure was designed with on-chip light amplification in mind, for example with an Er-doped oxide spacer layer. Proof-of-concept racetrack resonators were fabricated and characterized, showing quality factors up to 50,000 at critical coupling and residual losses of 4 dB/cm at wavelengths away from the N-H bond absorption peak in SiN, demonstrating the high potential of these horizontal slot waveguides for use in active integrated photonics.

5.
Opt Lett ; 47(23): 6201-6204, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-37219207

ABSTRACT

We demonstrate an integrated source of frequency-entangled photon pairs on a silicon photonics chip. The emitter has a coincidence-to-accidental ratio exceeding 103. We prove entanglement by showing two-photon frequency interference with a visibility of 94.6% ± 1.1%. This result opens the possibility of on-chip integration of frequency-bin sources with modulators and the other active and passive devices available in the silicon photonics platform.

6.
Light Sci Appl ; 10(1): 232, 2021 Nov 17.
Article in English | MEDLINE | ID: mdl-34785641

ABSTRACT

GeSn alloys are promising materials for CMOS-compatible mid-infrared lasers manufacturing. Indeed, Sn alloying and tensile strain can transform them into direct bandgap semiconductors. This growing laser technology however suffers from a number of limitations, such as poor optical confinement, lack of strain, thermal, and defects management, all of which are poorly discussed in the literature. Herein, a specific GeSn-on-insulator (GeSnOI) stack using stressor layers as dielectric optical claddings is demonstrated to be suitable for a monolithically integration of planar Group-IV semiconductor lasers on a versatile photonic platform for the near- and mid-infrared spectral range. Microdisk-shape resonators on mesa structures were fabricated from GeSnOI, after bonding a Ge0.9Sn0.1 alloy layer grown on a Ge strain-relaxed-buffer, itself on a Si(001) substrate. The GeSnOI microdisk mesas exhibited significantly improved optical gain as compared to that of conventional suspended microdisk resonators formed from the as-grown layer. We further show enhanced vertical out-coupling of the disk whispering gallery mode in-plane radiation, with up to 30% vertical out-coupling efficiency. As a result, the GeSnOI approach can be a valuable asset in the development of silicon-based mid-infrared photonics that combine integrated sources in a photonic platform with complex lightwave engineering.

7.
Nanomaterials (Basel) ; 11(11)2021 Nov 03.
Article in English | MEDLINE | ID: mdl-34835713

ABSTRACT

Subwavelength grating (SWG) metamaterials have garnered a great interest for their singular capability to shape the material properties and the propagation of light, allowing the realization of devices with unprecedented performance. However, practical SWG implementations are limited by fabrication constraints, such as minimum feature size, that restrict the available design space or compromise compatibility with high-volume fabrication technologies. Indeed, most successful SWG realizations so far relied on electron-beam lithographic techniques, compromising the scalability of the approach. Here, we report the experimental demonstration of an SWG metamaterial engineered beam splitter fabricated with deep-ultraviolet immersion lithography in a 300-mm silicon-on-insulator technology. The metamaterial beam splitter exhibits high performance over a measured bandwidth exceeding 186 nm centered at 1550 nm. These results open a new route for the development of scalable silicon photonic circuits exploiting flexible metamaterial engineering.

8.
Opt Lett ; 46(16): 4021-4024, 2021 Aug 15.
Article in English | MEDLINE | ID: mdl-34388801

ABSTRACT

Integrated microspectrometers implemented in silicon photonic chips have gathered a great interest for diverse applications such as biological analysis, environmental monitoring, and remote sensing. These applications often demand high spectral resolution, broad operational bandwidth, and large optical throughput. Spatial heterodyne Fourier-transform (SHFT) spectrometers have been proposed to overcome the limited optical throughput of dispersive and speckle-based on-chip spectrometers. However, state-of-the-art SHFT spectrometers in near-infrared achieve large optical throughput only within a narrow operational bandwidth. Here we demonstrate for the first time, to the best of our knowledge, a broadband silicon nitride SHFT spectrometer with the largest light collecting multiaperture input (320×410µm2) ever implemented in an SHFT on-chip spectrometer. The device was fabricated using 248 nm deep-ultraviolet lithography, exhibiting over 13 dB of optical throughput improvement compared to a single-aperture device. The measured resolution varies between 29 and 49 pm within the 1260-1600 nm wavelength range.

9.
Opt Express ; 29(12): 18502-18511, 2021 Jun 07.
Article in English | MEDLINE | ID: mdl-34154105

ABSTRACT

We propose a microring resonator (MRR) optical switch based on III-V/Si hybrid metal-oxide-semiconductor (MOS) optical phase shifter with an ultrathin InP membrane. By reducing the thickness of the InP membrane, we can reduce the insertion loss of the phase shifter, resulting in a high-quality-factor (Q-factor) MRR switch. By optimizing the device structure using numerical analysis, we successfully demonstrated a proof-of-concept MRR optical switch. The optical switch exhibits 0.3 pW power consumption for switching, applicable to power-efficient, thermal-crosstalk-free, Si programmable photonic integrated circuits (PICs) based on wavelength division multiplexing (WDM).

10.
Opt Lett ; 46(3): 617-620, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33528423

ABSTRACT

Surface grating couplers are fundamental building blocks for coupling the light between optical fibers and integrated photonic devices. However, the operational bandwidth of conventional grating couplers is intrinsically limited by their wavelength-dependent radiation angle. The few dual-band grating couplers that have been experimentally demonstrated exhibit low coupling efficiencies and rely on complex fabrication processes. Here we demonstrate for the first time, to the best of our knowledge, the realization of an efficient dual-band grating coupler fabricated using 193 nm deep-ultraviolet lithography for 10 Gbit symmetric passive optical networks. The footprint of the device is 17×10µm2. We measured coupling efficiencies of -4.9 and -5.2dB with a 3-dB bandwidth of 27 and 56 nm at the wavelengths of 1270 and 1577 nm, corresponding to the upstream and downstream channels, respectively.

11.
Opt Lett ; 45(23): 6559-6562, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-33258861

ABSTRACT

A polarization tolerant optical receiver is a key building block for the development of wavelength division multiplexing based high-speed optical data links. However, the design of a polarization independent demultiplexer is not trivial. In this Letter, we report on the realization of a polarization tolerant arrayed waveguide grating (AWG) on a 300-mm silicon nitride (SiN) photonic platform. By introducing a series of individual polarization rotators in the middle of the waveguide array, the polarization dependence of the AWG has been substantially reduced. Insertion losses below 2.2 dB and a crosstalk level better than -29dB has been obtained for transverse electric and transverse magnetic polarizations on a four-channel coarse AWG. The AWG temperature sensitivity has also been evaluated. Thanks to the low thermo-optical coefficient of SiN, a thermal shift below 12 pm/°C has been demonstrated.

12.
Opt Express ; 28(19): 27919-27926, 2020 Sep 14.
Article in English | MEDLINE | ID: mdl-32988074

ABSTRACT

Recently, erbium-doped integrated waveguide devices have been extensively studied as a CMOS-compatible and stable solution for optical amplification and lasing on the silicon photonic platform. However, erbium-doped waveguide technology still remains relatively immature when it comes to the production of competitive building blocks for the silicon photonics industry. Therefore, further progress is critical in this field to answer the industry's demand for infrared active materials that are not only CMOS-compatible and efficient, but also inexpensive and scalable in terms of large volume production. In this work, we present a novel and simple fabrication method to form cost-effective erbium-doped waveguide amplifiers on silicon. With a single and straightforward active layer deposition, we convert passive silicon nitride strip waveguide channels on a fully industrial 300 mm photonic platform into active waveguide amplifiers. We show net optical gain over sub-cm long waveguide channels that also include grating couplers and mode transition tapers, ultimately demonstrating tremendous progress in developing cost-effective active building blocks on the silicon photonic platform.

13.
Opt Express ; 28(8): 10888-10898, 2020 Apr 13.
Article in English | MEDLINE | ID: mdl-32403610

ABSTRACT

Dual-comb spectroscopy using a silicon Mach-Zehnder modulator is reported for the first time. First, the properties of frequency combs generated by silicon modulators are assessed in terms of tunability, coherence, and number of lines. Then, taking advantage of the frequency agility of electro-optical frequency combs, a new technique for fine resolution absorption spectroscopy is proposed, named frequency-tuning dual-comb spectroscopy, which combines dual-comb spectroscopy and frequency spacing tunability to measure optical spectra with detection at a unique RF frequency. As a proof of concept, a 24 GHz optical bandwidth is scanned with a 1 GHz resolution.

14.
Opt Lett ; 44(18): 4578-4581, 2019 Sep 15.
Article in English | MEDLINE | ID: mdl-31517935

ABSTRACT

Wideband and polarization-independent wavelength filters with low sensitivity to temperature variations have great potential for wavelength division multiplexing applications. However, simultaneously achieving these metrics is challenging for silicon-on-insulator photonics technology. Here, we harness the reduced index contrast and the low thermo-optic coefficient of silicon nitride to demonstrate waveguide Bragg grating filters with wideband apolar rejection and low thermal sensitivity. Filter birefringence is reduced by judicious design of a triangularly shaped lateral corrugation. Based on this approach, we demonstrate silicon nitride Bragg filters with a measured polarization-independent 40 dB optical rejection with negligible off-band excess loss, and a sensitivity to thermal variations below 20 pm/°C.

15.
Opt Express ; 27(18): 26239-26250, 2019 Sep 02.
Article in English | MEDLINE | ID: mdl-31510482

ABSTRACT

The availability of low-loss optical interfaces to couple light between standard optical fibers and high-index-contrast silicon waveguides is essential for the development of chip-integrated nanophotonics. Input and output couplers based on diffraction gratings are attractive coupling solutions. Advanced grating coupler designs, with Bragg or metal mirror underneath, low- and high-index overlays, and multi-level or multi-layer layouts, have proven less useful due to customized or complex fabrication, however. In this work, we propose a rather simpler in design of efficient off-chip fiber couplers that provide a simulated efficiency up to 95% (-0.25 dB) at a wavelength of 1.55 µm. These grating couplers are formed with an L-shaped waveguide profile and synthesized subwavelength grating metamaterials. This concept jointly provides sufficient degrees of freedom to simultaneously control the grating directionality and out-radiated field profile of the grating mode. The proposed chip-to-fiber couplers promote robust sub-decibel coupling of light, yet contain device dimensions (> 120 nm) compatible with standard lithographic technologies presently available in silicon nanophotonic foundries. Fabrication imperfections are also investigated. Dimensional offsets of ± 15 nm in shallow-etch depth and ± 10 nm in linewidth's and mask misalignments are tolerated for a 1-dB loss penalty. The proposed concept is meant to be universal, which is an essential prerequisite for developing reliable and low-cost optical couplers. We foresee that the work on L-shaped grating couplers with sub-decibel coupling efficiencies could also be a valuable direction for silicon chip interfacing in integrated nanophotonics.

16.
Opt Express ; 27(13): 17701-17707, 2019 Jun 24.
Article in English | MEDLINE | ID: mdl-31252726

ABSTRACT

The successful integration of capacitive phase shifters featuring a p-type strained SiGe layer in a 300 mm silicon photonics platform is presented. The phase shift is evaluated with a voltage swing of only 0.9 Vpp, compatible with CMOS technology. A good correlation is shown between the phase shift efficiency from 10 to 60°/mm and the capacitive oxide thickness varying from 15 to 4 nm. Corresponding insertion losses are as low as 3 dB/mm thanks to the development of low loss poly-silicon and to a careful design of the doped layers within the waveguide. The thin SiGe layer brings an additional 20% gain in efficiency due to higher hole efficiency in strained SiGe.

17.
Opt Express ; 26(5): 5983-5990, 2018 Mar 05.
Article in English | MEDLINE | ID: mdl-29529794

ABSTRACT

Optical properties of poly-silicon material are investigated to be integrated in new silicon photonics devices, such as capacitive modulators. Test structure fabrication is done on 300 mm wafer using LPCVD deposition: 300 nm thick amorphous silicon layers are deposited on thermal oxide, followed by solid phase crystallization anneal. Rib waveguides are fabricated and optical propagation losses measured at 1.31 µm. Physical analysis (TEM ASTAR, AFM and SIMS) are used to assess the origin of losses. Optimal deposition and annealing conditions have been defined, resulting in 400 nm-wide rib waveguides with only 9.2-10 dB/cm losses.

18.
Opt Express ; 25(16): 19487-19496, 2017 Aug 07.
Article in English | MEDLINE | ID: mdl-29041142

ABSTRACT

Germanium photodetectors are considered to be mature components in the silicon photonics device library. They are critical for applications in sensing, communications, or optical interconnects. In this work, we report on design, fabrication, and experimental demonstration of an integrated waveguide PIN photodiode architecture that calls upon lateral double Silicon/Germanium/Silicon (Si/Ge/Si) heterojunctions. This photodiode configuration takes advantage of the compatibility with contact process steps of silicon modulators, yielding reduced fabrication complexity for transmitters and offering high-performance optical characteristics, viable for high-speed and efficient operation near 1.55 µm wavelengths. More specifically, we experimentally obtained at a reverse voltage of 1V a dark current lower than 10 nA, a responsivity higher than 1.1 A/W, and a 3 dB opto-electrical cut-off frequency over 50 GHz. The combined benefits of decreased process complexity and high-performance device operation pave the way towards attractive integration strategies to deploy cost-effective photonic transceivers on silicon-on-insulator substrates.

19.
Opt Lett ; 42(17): 3439-3442, 2017 Sep 01.
Article in English | MEDLINE | ID: mdl-28957057

ABSTRACT

Grating couplers enable position-friendly interfacing of silicon chips by optical fibers. The conventional coupler designs call upon comparatively complex architectures to afford efficient light coupling to sub-micron silicon-on-insulator (SOI) waveguides. Conversely, the blazing effect in double-etched gratings provides high coupling efficiency with reduced fabrication intricacy. In this Letter, we demonstrate for the first time, to the best of our knowledge, the realization of an ultra-directional L-shaped grating coupler, seamlessly fabricated by using 193 nm deep-ultraviolet (deep-UV) lithography. We also include a subwavelength index engineered waveguide-to-grating transition that provides an eight-fold reduction of the grating reflectivity, down to 1% (-20 dB). A measured coupling efficiency of -2.7 dB (54%) is achieved, with a bandwidth of 62 nm. These results open promising prospects for the implementation of efficient, robust, and cost-effective coupling interfaces for sub-micrometric SOI waveguides, as desired for large-volume applications in silicon photonics.

20.
Opt Express ; 25(10): 11217-11222, 2017 May 15.
Article in English | MEDLINE | ID: mdl-28788803

ABSTRACT

In this work, a 25 Gb ps silicon push-pull Mach-Zehnder modulator operating in the O-Band (1260 nm - 1360 nm) of optical communications and fabricated on a 300 mm platform is presented. The measured modulation efficiency (VπLπ) was comprised between 0.95 V cm and 1.15 V cm, which is comparable to the state-of-the-art modulators in the C-Band, that enabled its use with a driving voltage of 3.3 Vpp, compatible with BiCMOS technology. An extinction ratio of 5 dB and an on-chip insertion losses of 3.6 dB were then demonstrated at 25 Gb ps.

SELECTION OF CITATIONS
SEARCH DETAIL
...