Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Scand J Immunol ; 99(1): e13333, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38112220

ABSTRACT

In disease states with chronic inflammation, there is a crosstalk between mast cells and neutrophil granulocytes in the inflamed microenvironment, which may be potentiated by tryptase. In systemic mastocytosis (SM), mast cells are constitutively active and tryptase is elevated in blood. Mast cell activation in SM leads to symptoms from various organs depending on where the active mast cells reside, for example, palpitations, flush, allergic symptoms including anaphylactic reactions, and osteoporosis. Whether neutrophil function is altered in SM is not well understood. In the current study, we assessed nucleosomal citrullinated histone H3 (H3Cit-DNA) as a proxy for neutrophil extracellular trap release in plasma from 55 patients with indolent and advanced SM. We observed a strong trend towards a correlation between leukocyte count, eosinophil count and neutrophil count and H3Cit-DNA levels in patients with advanced SM but not in indolent SM; however, no differences in H3Cit-DNA levels in SM patients compared with healthy controls. H3Cit-DNA levels did not correlate with SM disease burden, tryptase levels, history of anaphylaxis or presence of cutaneous mastocytosis; thus, there is no evidence of a general neutrophil extracellular trap release in SM. Interestingly, H3Cit-DNA levels and leukocyte counts were elevated in a subgroup of SM patients with aberrant mast cell CD2 expression, which warrants further investigation. In conclusion, we found no evidence of global increase in neutrophil extracellular trap release in SM.


Subject(s)
Extracellular Traps , Mastocytosis, Systemic , Humans , Mastocytosis, Systemic/diagnosis , Tryptases , Mast Cells , DNA , Tumor Microenvironment
2.
J Allergy Clin Immunol ; 152(1): 205-213, 2023 07.
Article in English | MEDLINE | ID: mdl-36813186

ABSTRACT

BACKGROUND: Systemic mastocytosis (SM) is a heterogeneous group of mast cell-driven diseases diagnosed by bone marrow sampling. However, there are a limited number of available blood disease biomarkers. OBJECTIVE: Our aim was to identify mast cell-derived proteins that could potentially serve as blood biomarkers for indolent and advanced forms of SM. METHODS: We performed a plasma proteomics screening coupled with single-cell transcriptomic analysis in SM patients and healthy subjects. RESULTS: Plasma proteomics screening identified 19 proteins upregulated in indolent disease compared to healthy, and 16 proteins in advanced disease compared to indolent. Among these, 5 proteins, CCL19, CCL23, CXCL13, IL-10, and IL-12Rß1, were higher in indolent relative to healthy and in advanced disease compared to indolent. Single-cell RNA sequencing demonstrated that CCL23, IL-10, and IL-6 were selectively produced by mast cells. Notably, plasma CCL23 levels correlated positively with known markers of SM disease severity, namely tryptase levels, percentage bone marrow mast cell infiltration, and IL-6. CONCLUSION: CCL23 is produced predominantly by mast cells in SM, and CCL23 plasma levels are associated with disease severity, correlating positively with established markers of disease burden, thus suggesting that CCL23 is a specific SM biomarker. In addition, the combination of CCL19, CCL23, CXCL13, IL-10, and IL-12Rß1 may be useful for defining disease stage.


Subject(s)
Mastocytosis, Systemic , Mastocytosis , Humans , Mastocytosis, Systemic/diagnosis , Mastocytosis, Systemic/genetics , Mast Cells/metabolism , Interleukin-10 , Interleukin-6 , Transcriptome , Proteomics , Biomarkers , Mastocytosis/diagnosis , Chemokines, CC/genetics
3.
Front Immunol ; 13: 902881, 2022.
Article in English | MEDLINE | ID: mdl-35967297

ABSTRACT

Innate lymphoid cells (ILCs) play important roles in tissue homeostasis and host defense, but the proliferative properties and migratory behavior of especially human ILCs remain poorly understood. Here we mapped at single-cell resolution the spatial distribution of quiescent and proliferative human ILCs within the vascular versus tissue compartment. For this purpose, we employed MISTRG humanized mice as an in-vivo model to study human ILCs. We uncovered subset-specific differences in the proliferative status between vascular and tissue ILCs within lymphoid and non-lymphoid organs. We also identified CD117-CRTH2-CD45RA+ ILCs in the spleen that were highly proliferative and expressed the transcription factor TCF-1. These proliferative ILCs were present during the neonatal period in human blood and emerged early during population of the human ILC compartment in MISTRG mice transplanted with human hematopoietic stem and progenitor cells (HSPCs). Single-cell RNA-sequencing combined with intravascular cell labeling suggested that proliferative ILCs actively migrated from the local vasculature into the spleen tissue. Collectively, our comprehensive map reveals the proliferative topography of human ILCs, linking cell migration and spatial compartmentalization with cell division.


Subject(s)
Immunity, Innate , Lymphocytes , Animals , Cell Movement , Humans , Mice
5.
Blood Adv ; 6(15): 4439-4449, 2022 08 09.
Article in English | MEDLINE | ID: mdl-35500226

ABSTRACT

Mast cell accumulation is a hallmark of a number of diseases, including allergic asthma and systemic mastocytosis. Immunoglobulin E-mediated crosslinking of the FcεRI receptors causes mast cell activation and contributes to disease pathogenesis. The mast cell lineage is one of the least studied among the hematopoietic cell lineages, and controversies remain about whether FcεRI expression appears during the mast cell progenitor stage or during terminal mast cell maturation. Here, we used single-cell transcriptomics analysis to reveal a temporal association between the appearance of FcεRI and the mast cell gene signature in CD34+ hematopoietic progenitors in adult peripheral blood. In agreement with these data, the FcεRI+ hematopoietic progenitors formed morphologically, phenotypically, and functionally mature mast cells in long-term culture assays. Single-cell transcriptomics analysis further revealed the expression patterns of prospective cytokine receptors regulating development of mast cell progenitors. Culture assays showed that interleukin-3 (IL-3) and IL-5 promoted disparate effects on progenitor cell proliferation and survival, respectively, whereas IL-33 caused robust FcεRI downregulation. Taken together, we showed that FcεRI expression appears at the progenitor stage of mast cell differentiation in peripheral blood. We also showed that external stimuli regulate FcεRI expression of mast cell progenitors, providing a possible explanation for the variable FcεRI expression levels during mast cell development.


Subject(s)
Mast Cells , Transcriptome , Adult , Humans , Prospective Studies , Receptors, IgE/genetics , Receptors, IgE/metabolism , Stem Cells/metabolism
6.
Front Immunol ; 12: 804812, 2021.
Article in English | MEDLINE | ID: mdl-35058936

ABSTRACT

Background: Immunohistochemical analysis of granule-associated proteases has revealed that human lung mast cells constitute a heterogeneous population of cells, with distinct subpopulations identified. However, a systematic and comprehensive analysis of cell-surface markers to study human lung mast cell heterogeneity has yet to be performed. Methods: Human lung mast cells were obtained from lung lobectomies, and the expression of 332 cell-surface markers was analyzed using flow cytometry and the LEGENDScreen™ kit. Markers that exhibited high variance were selected for additional analyses to reveal whether they were correlated and whether discrete mast cell subpopulations were discernable. Results: We identified the expression of 102 surface markers on human lung mast cells, 23 previously not described on mast cells, of which several showed high continuous variation in their expression. Six of these markers were correlated: SUSD2, CD49a, CD326, CD34, CD66 and HLA-DR. The expression of these markers was also correlated with the size and granularity of mast cells. However, no marker produced an expression profile consistent with a bi- or multimodal distribution. Conclusions: LEGENDScreen analysis identified more than 100 cell-surface markers on mast cells, including 23 that, to the best of our knowledge, have not been previously described on human mast cells. The comprehensive expression profiling of the 332 surface markers did not identify distinct mast cell subpopulations. Instead, we demonstrate the continuous nature of human lung mast cell heterogeneity.


Subject(s)
Cell Plasticity , Lung/cytology , Lung/immunology , Mast Cells/immunology , Mast Cells/metabolism , Receptors, Cell Surface/metabolism , Biomarkers , Cell Differentiation , Cell Plasticity/immunology , Flow Cytometry , Gene Expression , Humans , Immunohistochemistry , Immunophenotyping , Mast Cells/cytology , Peptide Hydrolases/metabolism , Receptors, Cell Surface/genetics , Receptors, IgE/genetics , Receptors, IgE/metabolism
7.
Biosens Bioelectron ; 77: 428-34, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26452079

ABSTRACT

The nematode Caenorhabditis elegans has become an essential model organism in neuroscience research because of its stereotyped anatomy, relevance to human biology, and capacity for genetic manipulation. To solve the intrinsic challenges associated with performing manual operations on C. elegans, many automated chip designs based on immobilization-imaging-release approaches have been proposed. These designs are prone to limitations such as the exertion of physical stress on the worms and limited throughput. In this work, a continuous-flow, high-throughput, automated C. elegans analyzer based on droplet encapsulation and real-time image processing was developed to analyze fluorescence expression in worms. To demonstrate its capabilities, two strains of C. elegans nematodes with different levels of expression of green fluorescent protein (GFP) were first mixed in a buffer solution. The worms were encapsulated in water-in-oil droplets to restrict random locomotion. The droplets were closely packed in a two-layer polydimethylsiloxane (PDMS) platform and were flowed through a narrow straight channel, in which a region of interest (ROI) was defined and continuously recorded by a frame acquisition device. Based on the number of pixels counted in the selected color range, our custom software analyzed GFP expression to differentiate between two strains with nearly 100% accuracy and a throughput of 0.5 seconds/worm.


Subject(s)
Caenorhabditis elegans/metabolism , Cell Separation/instrumentation , Flow Cytometry/instrumentation , Lab-On-A-Chip Devices , Microscopy, Fluorescence/instrumentation , Molecular Imaging/instrumentation , Animals , Caenorhabditis elegans Proteins/metabolism , Computer Systems , Equipment Design , Equipment Failure Analysis , Gene Expression Profiling/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL
...