Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Sci (Weinh) ; 11(26): e2309291, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38704699

ABSTRACT

Oxides are of interest for thermoelectrics due to their high thermal stability, chemical inertness, low cost, and eco-friendly constituting elements. Here, adopting a unique synthesis route via chemical co-precipitation at strongly alkaline conditions, one of the highest thermoelectric performances for ZnO ceramics ( P F max = $PF_{\text{max}} =$  21.5 µW cm-1 K-2 and z T max = $zT_{\text{max}} =$  0.5 at 1100 K in Zn 0.96 Al 0.04 O ${\rm Zn}_{0.96} {\rm Al}_{0.04}{\rm O}$ ) is achieved. These results are linked to a distinct modification of the electronic structure: charge carriers become trapped at the edge of the conduction band due to Anderson localization, evidenced by an anomalously low carrier mobility, and characteristic temperature and doping dependencies of charge transport. The bi-dimensional optimization of doping and carrier localization enable a simultaneous improvement of the Seebeck coefficient and electrical conductivity, opening a novel pathway to advance ZnO thermoelectrics.

SELECTION OF CITATIONS
SEARCH DETAIL
...