Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Prostate ; 80(14): 1253-1262, 2020 10.
Article in English | MEDLINE | ID: mdl-32803894

ABSTRACT

BACKGROUND: To assess the feasibility of a novel DNA-based probe panel to detect copy number alterations (CNAs) in prostate tumor DNA and its performance for predicting clinical progression. METHODS: A probe panel was developed and optimized to measure CNAs in trace amounts of tumor DNA (2 ng) isolated from formalin-fixed paraffin-embedded tissues. Ten genes previously associated with aggressive disease were targeted. The panel's feasibility and performance were assessed in 175 prostate cancer (PCa) patients who underwent radical prostatectomy with a median 10-year follow-up, including 42 men who developed disease progression (either metastasis and/or PCa-specific death). Association with disease progression was tested using univariable and multivariable analyses. RESULTS: The probe panel detected CNAs in all 10 genes in tumor DNA isolated from either diagnostic biopsies or surgical specimens. A four-gene model (PTEN/MYC/BRCA2/CDKN1B) had the strongest association with disease progression; 64.3% of progressors and 22.5% of non-progressors had at least one CNA in these four genes, odds ratio (OR) (95% confidence interval) = 6.21 (2.77-13.87), P = 8.48E-06. The association with disease progression remained significant after adjusting for known clinicopathological variables. Among the seven progressors of the 65 patients with clinically low-risk disease, three (42.9%) had at least one CNA in these four genes. CONCLUSIONS: The probe panel can detect CNAs in trace amounts of tumor DNA from biopsies or surgical tissues at the time of diagnosis or surgery. CNAs independently predict metastatic/lethal cancer, particularly among men with clinically low-risk disease at diagnosis. If validated, this may improve current abilities to assess tumor aggressiveness.


Subject(s)
DNA, Neoplasm/genetics , Gene Dosage , Prostatic Neoplasms/genetics , Aged , DNA Probes/genetics , Disease Progression , Feasibility Studies , Humans , Male , Middle Aged , Predictive Value of Tests , Prostatic Neoplasms/pathology
2.
Am J Physiol Cell Physiol ; 318(4): C762-C776, 2020 04 01.
Article in English | MEDLINE | ID: mdl-31995410

ABSTRACT

Hypercholesterolemia is a major risk factor for adverse cardiovascular outcomes, but its effect on angiogenesis and wound healing is not well understood. In this study, using a combination of mass spectrometry and laurdan two-photon imaging, we show that elevated levels of low-density lipoprotein (LDL), like those seen in hypercholesterolemic patients, lead to an increase in both free cholesterol and cholesterol esters, as well as increase in lipid order of endothelial cell membranes. Notably, these effects are distinct and opposite to the lack of cholesterol loading and the disruption of lipid order observed in our earlier studies in response to oxidized LDL (oxLDL). The same pathological level of LDL leads to a significant inhibition of endothelial proliferation and cell cycle arrest in G2/M phase, whereas oxLDL enhances endothelial proliferation in S phase of the cycle. LDL but not oxLDL suppresses the expression of vascular endothelial growth factor receptor-2 while enhancing the expression of vascular endothelial growth factor (VEGF). Furthermore, we show that aged (8-10 mo) hypercholesterolemic apolipoprotein E-deficient (ApoE-/-) mice display delayed wound closure compared with age-matched C57/BL6 wild-type controls following a skin punch biopsy. The delay in wound healing is associated with a decreased expression of cluster of differentiation 31 platelet endothelial cell adhesion molecule endothelial marker and decreased angiogenesis within the wound bed. Furthermore, decreased endothelial responsiveness to the growth factors VEGF and basic fibroblast growth factor is observed in ApoE-/- mice in Matrigel plugs and in Matrigels with high levels of LDL in wild-type mice. We propose that plasma hypercholesterolemia is antiangiogenic due to elevated levels of LDL.


Subject(s)
Cholesterol/metabolism , Endothelial Cells/metabolism , Lipoproteins, LDL/metabolism , Wound Healing/physiology , Animals , Cells, Cultured , Collagen , Drug Combinations , Hypercholesterolemia/blood , Hypercholesterolemia/metabolism , Laminin , Mice , Neovascularization, Pathologic/metabolism , Proteoglycans , Vascular Endothelial Growth Factor A/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...