Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Microbiol Biotechnol ; 104(13): 6013-6022, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32367311

ABSTRACT

Directed evolution has become an important method to unleash the latent potential of enzymes to make them uniquely suited for human purposes. However, the need for a large reagent volume and sophisticated instrumentation hampers its broad implementation. In an attempt to address this problem, here we report a paper-based high-throughput screening approach that should find broad application in generating desired enzymes. As an example case, the dehalogenation reaction of the halohydrin dehalogenase was adopted for assay development. In addition to visual detection, quantitative measurements were performed by measuring the color intensity of an image that was photographed by a smartphone and processed using ImageJ free software. The proposed method was first validated using a gold standard method and then applied to mutagenesis library screening with reduced consumption of reagents (i.e., ≤ 10 µl per assay) and a shorter assay time. We identified two active mutants (P135A and G137A) with improved activities toward four tested substrates. The assay not only consumes less reagents but also eliminates the need for expensive instrumentation. The proposed method demonstrates the potential of paper-based whole-cell screening coupled with digital image colorimetry as a promising approach for the discovery of industrially important enzymes.Key Points• A frugal method was developed for directed enzyme evolution.• Mutagenesis libraries were successfully screened on a paper platform.• Smartphone imaging was efficiently used to measure enzyme activities.


Subject(s)
Directed Molecular Evolution/methods , High-Throughput Screening Assays/methods , Paper , Catalysis , Colorimetry , Directed Molecular Evolution/economics , Directed Molecular Evolution/standards , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Library , High-Throughput Screening Assays/economics , High-Throughput Screening Assays/standards , Hydrolases/genetics , Hydrolases/metabolism , Mutagenesis , Mutation , Reproducibility of Results , Smartphone
2.
Biotechnol Appl Biochem ; 67(4): 685-692, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32064665

ABSTRACT

Epoxides are widely used chemicals, the determination of which is of paramount importance. Herein, we present an enzyme-based approach for noninstrumental detection of epoxides in standard solution and environmental samples. Halohydrin dehalogenase (HheC) as a biological recognition element and epichlorohydrin as a model analyte were evaluated for sensing. The detection is based on the color change of the pH indicator dye bromothymol blue caused by the HheC-catalyzed ring-opening of the epoxide substrate. The color change is then exploited for the determination of epoxide using a smartphone as an image acquisition and data processing device, eliminating the need for computer-based image analysis software. The color parameters were systematically evaluated to determine the optimum quantitative analytical parameter. Under optimal conditions, the proposed enzyme-based detection system showed a linear range of 0.13-2 mM with a detection limit of 0.07 mM and an assay time of 8 Min. In addition, the repeatability expressed as relative standard deviation was found to be below 5% (n = 6). Validation with gas chromatographic analyses showed that the proposed enzyme-based epoxide detection could be an alternative way in the quantitative determination of epoxides, and particularly useful in resource-limited settings.


Subject(s)
Biological Assay , Epoxy Compounds/analysis , Hydrolases/chemistry , Smartphone , Catalysis , Colorimetry , Kinetics
SELECTION OF CITATIONS
SEARCH DETAIL
...