Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 14: 1083191, 2023.
Article in English | MEDLINE | ID: mdl-36936928

ABSTRACT

Although the adipose tissue (AT) is a central metabolic organ in the regulation of whole-body energy homeostasis, it is also an important endocrine and immunological organ. As an endocrine organ, AT secretes a variety of bioactive peptides known as adipokines - some of which have inflammatory and immunoregulatory properties. As an immunological organ, AT contains a broad spectrum of innate and adaptive immune cells that have mostly been studied in the context of obesity. However, overwhelming evidence supports the notion that AT is a genuine immunological effector site, which contains all cell subsets required to induce and generate specific and effective immune responses against pathogens. Indeed, AT was reported to be an immune reservoir in the host's response to infection, and a site of parasitic, bacterial and viral infections. In addition, besides AT's immune cells, preadipocytes and adipocytes were shown to express innate immune receptors, and adipocytes were reported as antigen-presenting cells to regulate T-cell-mediated adaptive immunity. Here we review the current knowledge on the role of AT and AT's immune system in host defense against pathogens. First, we will summarize the main characteristics of AT: type, distribution, function, and extraordinary plasticity. Second, we will describe the intimate contact AT has with lymph nodes and vessels, and AT immune cell composition. Finally, we will present a comprehensive and up-to-date overview of the current research on the contribution of AT to host defense against pathogens, including the respiratory viruses influenza and SARS-CoV-2.


Subject(s)
COVID-19 , Immunity, Innate , Humans , SARS-CoV-2 , Adipose Tissue , Adipocytes/physiology
2.
Cell Death Dis ; 14(2): 75, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36725844

ABSTRACT

Coronavirus disease 2019 (COVID-19, caused by severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2)) is primarily a respiratory illness. However, various extrapulmonary manifestations have been reported in patients with severe forms of COVID-19. Notably, SARS-CoV-2 was shown to directly trigger white adipose tissue (WAT) dysfunction, which in turn drives insulin resistance, dyslipidemia, and other adverse outcomes in patients with COVID-19. Although advanced age is the greatest risk factor for COVID-19 severity, published data on the impact of SARS-CoV-2 infection on WAT in aged individuals are scarce. Here, we characterized the response of subcutaneous and visceral WAT depots to SARS-CoV-2 infection in young adult and aged golden hamsters. In both age groups, infection was associated with a decrease in adipocyte size in the two WAT depots; this effect was partly due to changes in tissue's lipid metabolism and persisted for longer in aged hamsters than in young-adult hamsters. In contrast, only the subcutaneous WAT depot contained crown-like structures (CLSs) in which dead adipocytes were surrounded by SARS-CoV-2-infected macrophages, some of them forming syncytial multinucleated cells. Importantly, older age predisposed to a unique manifestation of viral disease in the subcutaneous WAT depot during SARS-CoV-2 infection; the persistence of very large CLSs was indicative of an age-associated defect in the clearance of dead adipocytes by macrophages. Moreover, we uncovered age-related differences in plasma lipid profiles during SARS-CoV-2 infection. These data suggest that the WAT's abnormal response to SARS-CoV-2 infection may contribute to the greater severity of COVID-19 observed in elderly patients.


Subject(s)
Adipose Tissue, White , COVID-19 , Animals , Cricetinae , Adipose Tissue, White/pathology , COVID-19/pathology , Disease Models, Animal , Mesocricetus , SARS-CoV-2
3.
Br J Pharmacol ; 180(4): 385-400, 2023 02.
Article in English | MEDLINE | ID: mdl-36131381

ABSTRACT

BACKGROUND AND PURPOSE: T-type calcium channels, mainly the Cav 3.2 subtype, are important contributors to the nociceptive signalling pathway. We investigated their involvement in inflammation and related pain-like symptoms. EXPERIMENTAL APPROACH: The involvement of Cav 3.2 and T-type channels was investigated using genetic and pharmacological inhibition to assess mechanical allodynia/hyperalgesia and oedema development in two murine inflammatory pain models. The location of Cav 3.2 channels involved in pain-like symptoms was studied in mice with Cav 3.2 knocked out in C-low threshold mechanoreceptors (C-LTMR) and the use of ABT-639, a peripherally restricted T-type channel inhibitor. The anti-oedema effect of Cav 3.2 channel inhibition was investigated in chimeric mice with immune cells deleted for Cav 3.2. Lymphocytes and macrophages from either green fluorescent protein-targeted Cav 3.2 or KO mice were used to determine the expression of Cav 3.2 protein and the functional status of the cells. KEY RESULTS: Cav 3.2 channels contributed to the development of pain-like symptoms and oedema in the two murine inflammatory pain models. Our results provided evidence of the involvement of Cav 3.2 channels located on C-LTMRs and spinal cord in inflammatory pain. Cav 3.2 channels located in T cells and macrophages contribute to the inflammatory process. CONCLUSION AND IMPLICATIONS: Cav 3.2 channels play crucial roles in inflammation and related pain, implying that targeting of Cav 3.2 channels with pharmacological agents could be an attractive and readily evaluable strategy in clinical trials, to relieve chronic inflammatory pain in patients.


Subject(s)
Chronic Pain , Inflammation , Mice , Animals , Hyperalgesia , CD4-Positive T-Lymphocytes , Mechanoreceptors , Macrophages
4.
Viruses ; 14(9)2022 09 17.
Article in English | MEDLINE | ID: mdl-36146875

ABSTRACT

Obese patients with non-alcoholic steatohepatitis (NASH) are prone to severe forms of COVID-19. There is an urgent need for new treatments that lower the severity of COVID-19 in this vulnerable population. To better replicate the human context, we set up a diet-induced model of obesity associated with dyslipidemia and NASH in the golden hamster (known to be a relevant preclinical model of COVID-19). A 20-week, free-choice diet induces obesity, dyslipidemia, and NASH (liver inflammation and fibrosis) in golden hamsters. Obese NASH hamsters have higher blood and pulmonary levels of inflammatory cytokines. In the early stages of a SARS-CoV-2 infection, the lung viral load and inflammation levels were similar in lean hamsters and obese NASH hamsters. However, obese NASH hamsters showed worse recovery (i.e., less resolution of lung inflammation 10 days post-infection (dpi) and lower body weight recovery on dpi 25). Obese NASH hamsters also exhibited higher levels of pulmonary fibrosis on dpi 25. Unlike lean animals, obese NASH hamsters infected with SARS-CoV-2 presented long-lasting dyslipidemia and systemic inflammation. Relative to lean controls, obese NASH hamsters had lower serum levels of angiotensin-converting enzyme 2 activity and higher serum levels of angiotensin II-a component known to favor inflammation and fibrosis. Even though the SARS-CoV-2 infection resulted in early weight loss and incomplete body weight recovery, obese NASH hamsters showed sustained liver steatosis, inflammation, hepatocyte ballooning, and marked liver fibrosis on dpi 25. We conclude that diet-induced obesity and NASH impair disease recovery in SARS-CoV-2-infected hamsters. This model might be of value for characterizing the pathophysiologic mechanisms of COVID-19 and evaluating the efficacy of treatments for the severe forms of COVID-19 observed in obese patients with NASH.


Subject(s)
COVID-19 , Dyslipidemias , Non-alcoholic Fatty Liver Disease , Angiotensin II , Angiotensin-Converting Enzyme 2 , Animals , COVID-19/complications , Cricetinae , Cytokines , Diet , Disease Models, Animal , Humans , Inflammation , Mesocricetus , Non-alcoholic Fatty Liver Disease/etiology , Obesity/complications , SARS-CoV-2
5.
Molecules ; 26(5)2021 Mar 04.
Article in English | MEDLINE | ID: mdl-33806630

ABSTRACT

While thiol-based catalysts are widely employed for chemical protein synthesis relying on peptide thioester chemistry, this is less true for selenol-based catalysts whose development is in its infancy. In this study, we compared different selenols derived from the selenocysteamine scaffold for their capacity to promote thiol-thioester exchanges in water at mildly acidic pH and the production of peptide thioesters from bis(2-sulfanylethyl)amido (SEA) peptides. The usefulness of a selected selenol compound is illustrated by the total synthesis of a biologically active human chemotactic protein, which plays an important role in innate and adaptive immunity.


Subject(s)
Chemotactic Factors/metabolism , Chemotaxis , Esters/chemical synthesis , Organoselenium Compounds/chemistry , Peptide Fragments/chemistry , Protein Biosynthesis , Sulfhydryl Compounds/chemistry , Catalysis , Chemistry Techniques, Synthetic , Humans , Monocytes/cytology , Monocytes/physiology
6.
Cell Rep ; 32(10): 108116, 2020 09 08.
Article in English | MEDLINE | ID: mdl-32905761

ABSTRACT

CD1d-restricted invariant Natural Killer T (iNKT) cells represent a unique class of T lymphocytes endowed with potent regulatory and effector immune functions. Although these functions are acquired during thymic ontogeny, the sequence of events that gives rise to discrete effector subsets remains unclear. Using an unbiased single-cell transcriptomic analysis combined with functional assays, we reveal an unappreciated diversity among thymic iNKT cells, especially among iNKT1 cells. Mathematical modeling and biological methods unravel a developmental map whereby iNKT2 cells constitute a transient branching point toward the generation of iNKT1 and iNKT17 cells, which reconciles the two previously proposed models. In addition, we identify the transcription co-factor Four-and-a-half LIM domains protein 2 (FHL2) as a critical cell-intrinsic regulator of iNKT1 specification. Thus, these data illustrate the changing transcriptional network that guides iNKT cell effector fate.


Subject(s)
Natural Killer T-Cells/immunology , Single-Cell Analysis/methods , Cell Differentiation , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...