Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Exp Dermatol ; 32(9): 1485-1497, 2023 09.
Article in English | MEDLINE | ID: mdl-37309615

ABSTRACT

Each year, 3.3 million Americans are diagnosed with non-melanoma skin cancers (NMSC) and an additional 40 million individuals undergo treatment of precancerous actinic keratosis lesions. The most effective treatments of NMSC (surgical excision and Mohs surgery) are invasive, expensive and require specialised training. More readily accessible topical therapies currently are 5-fluorouracil (a chemotherapeutic agent) and imiquimod (an immune modulator), but these can have significant side effects which limit their efficacy. Therefore, more effective and accessible treatments are needed for non-melanoma cancers and precancers. Our previous work demonstrated that the small molecule N-phosphonacetyl-L-aspartate (PALA) both inhibits pyrimidine nucleotide synthesis and activates pattern recognition receptor nucleotide-binding oligomerization domain 2. We propose that topical application of PALA would be an effective NMSC therapy, by combining the chemotherapeutic and immune modulatory features of 5-fluorouracil and imiquimod. Daily topical application of PALA to mouse skin was well tolerated and resulted in less irritation, fewer histopathological changes, and less inflammation than caused by either 5-fluorouracil or imiquimod. In an ultraviolet light-induced NMSC mouse model, topical PALA treatment substantially reduced the numbers, areas and grades of tumours, compared to vehicle controls. This anti-neoplastic activity was associated with increased expression of the antimicrobial peptide cathelicidin and increased recruitment of CD8+ T cells and F4/80+ macrophages to the tumours, demonstrating both immunomodulatory and anti-proliferative effects. These findings indicate that topical PALA is an excellent candidate as an effective alternative to current standard-of-care NMSC therapies.


Subject(s)
Aspartic Acid , Skin Neoplasms , Animals , Mice , Imiquimod , CD8-Positive T-Lymphocytes , Skin Neoplasms/drug therapy , Fluorouracil/pharmacology , Fluorouracil/therapeutic use
2.
Pituitary ; 25(1): 1-51, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34797529

ABSTRACT

Much of our understanding of GH's action stems from animal models and the generation and characterization of genetically altered or modified mice. Manipulation of genes in the GH/IGF1 family in animals started in 1982 when the first GH transgenic mice were produced. Since then, multiple laboratories have altered mouse DNA to globally disrupt Gh, Ghr, and other genes upstream or downstream of GH or its receptor. The ability to stay current with the various genetically manipulated mouse lines within the realm of GH/IGF1 research has been daunting. As such, this review attempts to consolidate and summarize the literature related to the initial characterization of many of the known gene-manipulated mice relating to the actions of GH, PRL and IGF1. We have organized the mouse lines by modifications made to constituents of the GH/IGF1 family either upstream or downstream of GHR or to the GHR itself. Available data on the effect of altered gene expression on growth, GH/IGF1 levels, body composition, reproduction, diabetes, metabolism, cancer, and aging are summarized. For the ease of finding this information, key words are highlighted in bold throughout the main text for each mouse line and this information is summarized in Tables 1, 2, 3 and 4. Most importantly, the collective data derived from and reported for these mice have enhanced our understanding of GH action.


Subject(s)
Growth Hormone , Receptors, Somatotropin , Animals , Body Composition , Growth Hormone/genetics , Growth Hormone/metabolism , Insulin-Like Growth Factor I/genetics , Insulin-Like Growth Factor I/metabolism , Mice , Mice, Transgenic , Models, Animal , Receptors, Somatotropin/genetics , Receptors, Somatotropin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...