Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 30(4): 8778-8789, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35616838

ABSTRACT

The urge to reduce greenhouse gas emissions, in particular carbon dioxide, is a global problem, not only in spatial terms but also in terms of the scope of activities and sectors involved. Nevertheless, some sectors/industries are more critical due to their overall contribution to the problem, which is the case of the Portland cement industry. The present research estimates the energy consumption and carbon emissions associated with a novel process for producing cement by recycling used concrete and mortars. The novel process assessed resorts to the magnetic separation of the cement paste from the aggregates, followed by the thermal reactivation of the cement paste. Comparing the recycled cement production with the clinker production, higher energy consumption (over 9000 MJ/t compared with roughly 4000 MJ/t for Portland cement) and lower carbon dioxide emissions (average 730 kg CO2/t compared with more than 800 kg CO2/t for Portland cement) were estimated. However, the potential benefits in an industrial application are potentially much higher with the optimization of the production process. In particular, improvements in the washing and drying of the material prior to the magnetic separation will be critical since most of the energy is consumed in the process of drying.


Subject(s)
Carbon Dioxide , Construction Materials
2.
Materials (Basel) ; 15(19)2022 Sep 29.
Article in English | MEDLINE | ID: mdl-36234107

ABSTRACT

The urgent need to tackle the effects of global warming has led to a worldwide compromise and ever-more demanding regulations. In this respect, as an important greenhouse gas emitter, the cement industry has to implement major changes in its production processes to achieve future goals. In this perspective, low-carbon eco-efficient cement, such as the thermoactivated recycled cement from concrete waste (RCC), seem to be a promising alternative to current carbon-intensive binders, such as ordinary Portland cement (OPC). This study aimed to demonstrate the potential contribution of RCC to the reduction in the environmental impacts of the cement industry, by means of a comparative life cycle assessment of three production methods of this binder (wet (WM), dry (DM) and air clean (ACM) methods) and OPC. Overall, RCC WM did not turn out to be a good alternative to OPC, essentially owing to the amount of fuel and electricity required for washing and drying the particles before the magnetic separation. On the other hand, RCC DM and RCC ACM proved to be promising alternatives to RCC WM and OPC, with a relevant reduction in all impact categories.

3.
Materials (Basel) ; 14(5)2021 Mar 08.
Article in English | MEDLINE | ID: mdl-33800234

ABSTRACT

The main purpose of the present work is to study the mechanical behavior and durability performance of recycled steel fiber reinforced concrete (RSFRC) under a chloride environment. To this end, the effect of chloride attack on the load-carrying capacity of pre-cracked RSFRC round panels is investigated by performing round panel tests supported on three points (RPT-3ps), considering the influence of the crack width and the fiber distribution/orientation profile. In addition, the influence of the adopted chloride exposure conditions on the post-cracking constitutive laws of the developed RSFRC is also assessed by performing numerical simulations for the prediction of the long-term performance of RSFRC under these aggressive conditions. The tensile stress-crack width relationship of RSFRC is derived by performing an inverse analysis with the RPT-3ps results. The obtained experimental and numerical results show a negligible effect of the chloride attack on the post-cracking behavior of RSFRC for the chloride exposure conditions and pre-crack width levels adopted in this study.

4.
Materials (Basel) ; 13(18)2020 Sep 05.
Article in English | MEDLINE | ID: mdl-32899578

ABSTRACT

This paper intends to contribute to a better knowledge of the production and rehydration of thermoactivated recycled cement and its incorporation in cement-based materials. To this end, the influence of the treatment temperature on the properties of recycled cements and recycled cement pastes was assessed by means of a wide array of tests. Anhydrous recycled cement as well as the resulting pastes were characterized through density and particle size, water demand and setting time, thermogravimetry, X-ray diffraction, field emission gun scanning electron microscopy, isothermal calorimetry, 29Si nuclear magnetic resonance spectroscopy, flowability, mechanical strength, mercury intrusion porosimetry and scanning electron microscopy. The treatment temperature had a significant influence on the dehydration and hydration of recycled cement, essentially resulting in the formation of C2S polymorphs of varying reactivity, which led to pastes of different fresh and hardened behaviors. The high water demand and the pre-hydration of recycled cement resulted in high setting times and low compressive strengths. The highest mechanical strength was obtained for a treatment temperature of 650 °C.

5.
Materials (Basel) ; 12(20)2019 Oct 22.
Article in English | MEDLINE | ID: mdl-31652565

ABSTRACT

This paper presents a comprehensive review on structural lightweight aggregate concrete (SLWAC) durability. The main transport properties and degradation mechanisms of reinforced concrete are addressed, namely, carbonation and chloride attack. The influence of the main composition parameters, such as type of aggregate, type of binder and water/binder ratio, as well as the influence of cracking, are also analysed. Finally, the current knowledge of SLWAC's service life prediction is assessed. Although the knowledge of SLWAC's durability behaviour is still limited, investigation works performed either in laboratory or in real environments indicate that SLWAC can have similar to better durability performance than normal weight concrete, especially when the same strength level is considered. The importance of the quality of the paste over the characteristics of the lightweight aggregates is highlighted. Durability standardization regarding SLWAC is still insufficient and is one of the main gaps of current knowledge. The objective of this review is to foster a better understanding on the durability and service life prediction of SLWAC, contributing to a greater confidence in using this type of concrete.

SELECTION OF CITATIONS
SEARCH DETAIL
...